首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   695篇
  免费   109篇
  国内免费   170篇
航空   557篇
航天技术   181篇
综合类   103篇
航天   133篇
  2024年   4篇
  2023年   7篇
  2022年   14篇
  2021年   29篇
  2020年   39篇
  2019年   38篇
  2018年   38篇
  2017年   57篇
  2016年   44篇
  2015年   50篇
  2014年   57篇
  2013年   55篇
  2012年   73篇
  2011年   79篇
  2010年   47篇
  2009年   70篇
  2008年   39篇
  2007年   47篇
  2006年   29篇
  2005年   22篇
  2004年   14篇
  2003年   11篇
  2002年   12篇
  2001年   20篇
  2000年   16篇
  1999年   3篇
  1998年   6篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   8篇
  1993年   8篇
  1992年   4篇
  1991年   3篇
  1990年   8篇
  1989年   5篇
排序方式: 共有974条查询结果,搜索用时 15 毫秒
91.
The significance of external influences on the environment of Earth and its atmosphere has become evident during recent years. Especially, on time scales of several hundred years, the cosmogenic isotope concentration during the Wolf-, Spoerer-, Maunder- and Dalton-Minimum indicates an increased cosmic ray flux. Because these grand minima of solar activity coincide with cold periods, a correlation of the Earth climate with the cosmic ray intensities is plausible. Any quantitative study of the effects of energetic particles on the atmosphere and environment of the Earth must address their transport to Earth and their interactions with the Earth’s atmosphere including their filtering by the terrestrial magnetosphere. The first problem is one of the fundamental problems in modern cosmic ray astrophysics, and corresponding studies began in the 1960s based on Parker’s cosmic ray modulation theory taking into account diffusion, convection, adiabatic deceleration, and (later) the drift of energetic particles in the global heliospheric magnetic field. It is well established that all of these processes determining the modulation of cosmic rays are depending on parameters that are varying with the solar magnetic cycle. Therefore, the galactic cosmic ray intensities close to Earth is the result of a complex modulation of the interstellar galactic spectrum within the heliosphere. The modern view of this cosmic ray modulation is summarized in our contribution.  相似文献   
92.
基于粒子群神经网络的轮盘优化   总被引:1,自引:2,他引:1  
将粒子群算法(PSO)和BP神经网络相结合, 构建了一种新型智能结构优化算法.PSO方法除用于结构优化外, 还被用于BP神经网络的构造及网络训练, 使之可自适应调整优化.结构优化中, 以BP神经网络取代有限元方法, 通过设计变量来映射目标函数和约束, 从而大大提高了计算速度.将此方法用于轮盘结构优化, 使得轮盘体积减少了17.5%, 结果通过检验.该方法便捷、高效, 为解决工程结构优化问题提供了一个新途径.   相似文献   
93.
运用粒子群算法解决航空企业自动化立体仓库中输送系统的调度优化问题.针对某主机厂自动化立体仓库输送系统的特点,采用分拣上/下包台、出/入库台、AGV运行的时间总和最小化作为性能指标,用粒子群算法的基本原理作为优化思想,然后使用 MATLAB软件进行算法仿真,分析结果的合理性.结果表明,该模型及仿真结果是合理的,效率高,满足航空企业使用需求.  相似文献   
94.
探讨了粉末GH4169高温合金中的原始颗粒边界的形成机理、其对合金组织性能的影响以及消除措施等。结果表明:粉末GH4169合金中原始颗粒边界组织主要由MC碳化物构成,而在粉末成型前进行预热处理可以有效抑制原始颗粒边界组织的生成,提高合金综合性能。  相似文献   
95.
为满足在超高速碰撞靶上开展航天器抗空间碎片防护性能试验,需要准确测量速度3~10km/s,以及更高速度的毫米级或亚毫米级粒子的飞行速度,在可以实现毫米级粒子探测的片光遮挡式粒子探测技术基础上发展了片光反射遮挡式粒子探测技术,通过采用提高粒子直径与激光光束宽度的比值,解决了探测粒子直径小于1mm时探测信号弱不能识别等关键技术,研制了试验装置并开展了验证试验,研究结果表明该技术在0.2~10km/s速度范围内可实现直径为0.1mm量级粒子的有效探测。  相似文献   
96.
一个用于目标跟踪的改进粒子滤波算法   总被引:1,自引:0,他引:1  
简化UT(unscented transformation)转化参数,修改UKF(unscented Kalmanfilter)提议分布,提出了改进的粒子滤波算法。调节因子的增加使得能在线自适应估计,滤波性能提高,并形成一个自适应的算法。仅有角测量的目标跟踪仿真试验证实了改进的粒子滤波算法要优于其它滤波方式。  相似文献   
97.
采用交、直流磁粉检验并结合金相试验、电子探针试验及微量元素含量分析的方法,对300M钢磁痕现象的本质进行了分析。结果表明,采用磁粉检验方法对航空优质钢进行纯洁度检验是可信的。  相似文献   
98.
根据本文给出的守恒方程和计算方法,对激波与沉积可燃粉尘的相互作用进行了数值研究,讨论了激波作用下的颗粒的上扬、点火与燃烧的基本特征以及波后燃烧粉尘云的内部结构。  相似文献   
99.
粒子群优化PSO(Particle Swarm Optimization)因其实现容易、精度高、调整参数少、收敛速度快等优点而在解决优化问题中得到了广泛的应用。分析了惯性权值及加速度因子对粒子群算法优化性能的影响,进而提出改进粒子群算法的方法:线性或非线性动态调整惯性因子,从而有效地提高算法的搜索能力;进行了仿真实验,仿真结果表明改进后的算法在全局搜优的速率与精度方面均有明显提高。  相似文献   
100.
喷流对飞机尾流涡影响的试验研究   总被引:4,自引:0,他引:4  
飞机产生的尾流涡,特别是大尺度的翼尖涡,对尾随其后的飞行器是非常有害的,本文旨在探索利用飞机发动机产生的喷流加速尾流涡消亡的方法。试验采用简化的飞机模型(有尾翼),建立了包含一对翼尖涡及一对反向旋转的尾翼涡(通过以负迎角安装尾翼得到)的4涡尾流系统。在无外来扰动的情况下,不同的尾翼设置下得到的尾翼涡对翼尖涡的作用效果不同,有的能导致翼尖涡提前消亡,有的则不能。考察了不同强度的喷流对不同4涡尾流系统的影响,且作为对比,对无尾翼(2涡系统)及无喷流下的各种情况也分别作了观测。试验在拖曳水槽中进行,运用体视粒子图像测速(SPIV)技术,观测了与模型拖曳方向垂直的、从机翼后缘到下游约45翼展间均布的一系列切面。结果表明:当喷流直接作用于涡时,其效果主要取决于两者之间的初始距离及相对强度;而当喷流作用于整个4涡尾流系统时,其引入的扰动对不同的系统均能起到一定程度的改善作用,这种作用的关键在于利用喷流优化对翼尖涡进行扰动的机制,而不仅仅取决于喷流的强度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号