首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   6篇
  国内免费   8篇
航空   17篇
航天技术   46篇
综合类   1篇
航天   32篇
  2023年   1篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   6篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   9篇
  2008年   9篇
  2007年   8篇
  2006年   10篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1991年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
31.
以3,5-二氨基-1,2,4-三唑为原料,经过重氮化、选择性还原、酸性氧化3步,合成出目标化合物5,5′-二硝基-3,3′-偶氮基-1-氢-1,2,4三唑(DNAT),通过红外光谱、元素分析、质谱分析进行了结构鉴定,并进行了DSC-TGA、燃烧性能分析、感度测试等性能研究。实验结果表明,5,5′-二硝基-3,3′-偶氮基-1-氢-1,2,4-三唑(DNAT)化合物具有密度高(1.88 g/cm3)、正的生成焓(446.448 kJ/mol)、热稳定性能好的特点,是一种性能良好的高氮含能化合物。  相似文献   
32.
杜宗罡  史雪梅  符全军 《火箭推进》2005,31(3):30-34,49
高能液体推进剂的发展有四个方面:金属化凝胶推进剂、高密度吸热型碳氢燃料推进剂、纳米材料液体推进剂、添加含能材料的液体推进剂。本文围绕高能液体推进剂的发展方向,综合论述了国内外的研究现状和应用前景分析,并提出了我国技术发展的初步思路。  相似文献   
33.
以一缩二乙二醇(DEG)为扩链剂,通过一步熔融聚合法,制备得到高含量3,3-二叠氮甲基氧丁环与四氢呋喃共聚醚(BAMO-THF)型含能热塑性弹性体(ETPE)。采用傅里叶变换红外光谱(FT-IR)和广角X-射线衍射仪(WXRD)表征制备的ETPE结构,动态力学热分析(DMA)、万能材料试验机、邵氏硬度仪研究其力学性质。结果表明,制备的BAMO-THF型ETPE具有明显的叠氮型聚醚聚氨酯弹性体特征。在加载应力和温度作用下,由于其线性分子链结构,ETPE试样蠕变程度较大。此外,扩链剂含量的增加并不利于ETPE延伸率和低温性能的提高。其中软段BAMO-THF含量达到93.3%,硬段含量仅为6.7%的D20试样力学性能较佳,抗拉强度和断裂伸长率分别为3.61 MPa和1 277%,低温玻璃化转变温度为-23.4℃。  相似文献   
34.
“嫦娥1号”(CE-1)、“嫦娥2号”(CE-2)都安装了1台太阳高能粒子探测器(High-energetic ParticlesDetectors,HPD)和2台太阳风离子探测器(Solar Wind Ion Detectors,SWIDs),进行了月球轨道200 km和100 km空间环境探测,获得了月球轨道空间高能带电粒子(质子、电子和重离子)能谱随时间的演化特征、等离子体与月球相互作用特征以及太阳风离子速度、密度和温度参量。空间环境探测数据分析结果表明:太阳活动低年、空间环境扰动水平相对较低、月球处于太阳风中时,近月空间带电粒子环境的基本特征与行星际空间相比变化不大。CE-1、CE-2在轨运行期间,发现了多起0.1~2 MeV能量电子急剧增加事件,这些事件发生在月球从太阳风运动到磁尾的所有空间区域,其中20%的事件伴随着卫星周围等离子体离子加速。模拟和统计研究表明:能量电子急剧增加使得绕月卫星和月球表面电位大幅下降导致了离子加速现象的发生;能量电子总流量大于1011 cm-2时,绕月卫星和月球表面充电电位可达负的上千伏。此外,月表溅射与反射太阳风离子、太阳风“拾起”离子等空间环境事件的发现,揭示了太阳风离子和月球存在复杂的相互作用过程。  相似文献   
35.
Long-term balloon observations have been performed by the Lebedev Physical Institute since 1957 up to the present time. The observations are taken several times a week at the polar and mid latitudes and allow us to study dynamics of galactic and solar cosmic ray as well as secondary particle fluxes in the atmosphere and in the near-Earth space. Solar energetic particles (120) – mostly protons – (SEP) events with >100 MeV proton intensity above 1 cm−2 s−1 s−1 were recorded during 1958–2006. Before the advent of the SEP monitoring on spacecraft these results constituted the only homogeneous series of >100 MeV SEP events. The SEP intensities and energy spectra inferred from the Lebedev Physical Institute observations are consistent with the results taken in the adjacent energy intervals by the spacecraft and neutron monitors. Joint consideration of the SEP events series recorded by balloons and by neutron monitors during solar cycles 20–23 makes it possible to restore the probable number of events in solar cycle 19, which was not properly covered by observations. Some correlation was found between duration of SEP event production in a solar cycle and sunspot cycle characteristics.  相似文献   
36.
The topic of relativistic electron dynamics in the outer radiation belt has received considerable attention for many years. Nevertheless, the problem of understanding the physical phenomenon involved is far from being resolved. In this paper, we use DEMETER observations to examine the variations of the energetic electron fluxes and ELF/VLF wave intensities in the inner magnetosphere during the intense 8 November 2004 magnetic storm. Electron flux spectra and associated wave intensity spectra are analysed throughout the magnetic storm and common characteristics or differences to other storm events are retained. The overall objective of this study is to identify and derive parameters that are relevant for particle flux modelling; the time constant characterizing the persistent decay after particle enhancement was found to be one of these important model parameters.The analysis of the 8 November 2004 event reveals that for L-shell parameter higher than 4, an electron flux dropout is observed during the storm’s main phase for electrons in the energy range 0.1–1 MeV, as has been reported from other measurements. Characteristic wave spectra accompanying this phase are analysed. They show a typical enhancement in the frequency range 0.3–10 kHz at onset for all L-shell values under consideration (2 < L < 5). During the first stage of the recovery phase, the electron fluxes are increased to a level higher than the pre-storm level, whereas the level of wave intensity in the frequency range observed below 300 Hz is at its highest. In the second stage, the particle flux decrease goes hand in hand with a global wave activity decline, the relaxation time of the latter being smaller than the former’s one. In some other cases, long-lasting electron enhancement associated with constant wave activity has been observed during this latter stage. For the above mentioned storm, while at low L values the decay time constants are higher for low energy electrons than for high energy electrons, this order is reversed at high L values. At about L = 3.6 the time constant is independent of electron energy.  相似文献   
37.
Solar energetic protons degrade performance and reliability of spacecraft systems due to single-event effects, total dose effects and displacement damage in electronics components including solar cells. On designing a solar cell panel, a total fluence of solar energetic protons (SEPs) which cause solar cell damage is needed to estimate power loss of the solar cells over mission life. Nowadays a solar panel area of spacecraft is increasing as spacecraft mission life becomes longer (15–18 years). Thus an accurate SEP model is strongly required for the cost-minimum design from the aerospace industry. The SEP model, JPL-91 proposed by Feynman et al., is currently used widely for solar cell designing. However, it is known that the JPL-91 model predicts higher fluences of protons than values actually experienced in space, especially after 7 years on orbit. In addition, the model is based on several assumptions, and also needs Monte-Carlo simulations for calculating fluences. In this study, we propose a new method for modeling SEPs especially focused on solar cell degradation. The newly-proposed method is empirical, which constructs a model based directly upon proton flux measurement data taken by instruments onboard spacecraft. This method has neither assumptions nor dependence on SEP event selection, both of which are needed in JPL-91. The model fluences derived from this method show lower fluences in longer missions compared to JPL-91. This method has been proposed to ISO (International Organization for Standardization) and has been discussed for a new standard SEP model.  相似文献   
38.
纳米铝粉在固体推进剂中的应用   总被引:1,自引:0,他引:1  
张明  梁彦  唐庆明 《火箭推进》2006,32(1):35-39
介绍金属纳米铝粉的制备方法,阐述了用于固体推进剂的纳米铝粉的突出效应,例如燃烧完全、提高推进剂燃烧速率、降低压强指数等,并对纳米铝粉在固体推进剂中的作用机理、应用中可能存在的问题进行了分析,并提出了可行的解决措施。  相似文献   
39.
We performed a search for ground level solar cosmic ray enhancements on the full five minute database of the Mexico City neutron monitor using wavelet filters and two different statistical tests. We present a detailed analysis of the time series of November 2, 1992, where we found a previously unreported increment matching the onset time of the impulsive phase of GLE 54, thus providing evidence of an effective detection of high energy solar cosmic rays.  相似文献   
40.
We have established a data set of 58 major hybrid SEP events associated with meter-to-decahectometer wavelength (m-to-DH) type II bursts, solar flares, and radio-load CMEs during the period of 1997–2014. The main focus of our study is to address the following two questions: Does the interaction of CMEs play a role in the enhancement of SEP intensity? Is there any difference in the seed population, and parent eruptions in the SEP events with and without CME interactions? Hence, the sample of 58 events is classified into two sets: (i) 35 non-interacting-CME-associated SEP events; (ii) 23 interacting-CME-associated SEP events. All the characteristics of SEPs, their associated CMEs/flares and the relationships between them are statistically analyzed and compared. Some of the basic attributes and relative elemental abundances (Fe/O ratios) of the both the sets are also compared. The results indicate that the seed particles in non-interacting-CME-associated SEP events are mostly from solar wind/coronal materials. But in the case of interacting-CME-associated SEP events, it may be associated with both flare material from preceding flares and coronal materials from solar wind/preceding CMEs. The correlation studies reveal that there are clear correlations between logarithmic peak intensity of SEP events and properties of CMEs (space speed: cc?=?0.56) and solar flares (peak intensity: cc?=?0.40; integrated flux: cc?=?0.52) for non-interacting-CME-associated SEP events. But these correlations are absent for the interacting-CME-associated events. In addition, the results suggest that interaction of primary CMEs with their preceding CMEs plays an important role in the enhancement of peak intensity of SEPs at least for a set of m-to-DH type II bursts associated SEP events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号