首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   81篇
  国内免费   93篇
航空   287篇
航天技术   172篇
综合类   67篇
航天   100篇
  2024年   4篇
  2023年   11篇
  2022年   22篇
  2021年   36篇
  2020年   19篇
  2019年   37篇
  2018年   33篇
  2017年   40篇
  2016年   31篇
  2015年   23篇
  2014年   40篇
  2013年   21篇
  2012年   34篇
  2011年   29篇
  2010年   27篇
  2009年   14篇
  2008年   21篇
  2007年   17篇
  2006年   24篇
  2005年   18篇
  2004年   8篇
  2003年   17篇
  2002年   10篇
  2001年   16篇
  2000年   14篇
  1999年   10篇
  1998年   10篇
  1997年   6篇
  1996年   8篇
  1995年   7篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
排序方式: 共有626条查询结果,搜索用时 15 毫秒
481.
提出了基于BP神经网络的机械式电表数字自动识别方法,首先通过预处理自动定位电表图像中的数字区域并实现单个数字的切分,然后对每个数字图像提取一组具有较高区分度且计算简单的典型网格特征,最后设计BP神经网络作为数字分类器,实现电度表显示值快速自动识别,该研究获得了电表数字正确识别率98.5%的结果,表明该系统具有较强的鲁棒性。  相似文献   
482.
Under consideration is the optimal control problem on a spacecraft motion in Newtonian central gravity field. With the use of the mathematical model of electrojet propulsion device (EPD) with solar energy source, proposed earlier in paper [1], the dependence of the EPD working substance choice on both the duration of the given dynamic maneuver and the propellant expenditures for its fulfillment is investigated. The efficiency evaluation is carrying out of optimal control of variable valued thrust as well as that for relay mode thrust and relay mode thrust with optimal fixed thrust value.  相似文献   
483.
基于高激发里德堡原子的微波电场测量技术与传统金属天线相比有诸多优越性,是未来微波电场高精度测量的重要方案之一。采用全红外光激发里德堡原子的方案不再依赖复杂而昂贵的短波长激光器,大大减小了激光器系统的体积与能耗。在三红外光级联激发里德堡铷原子的过程中,发现了中间态对应的双光梯形电磁诱导透明光学参数对三光激发里德堡态电磁诱导吸收峰信噪比具有重要影响,因此采用光失谐方法能很好地优化三光EIA光谱。利用微波场下的Autler-Townes分裂效应和标准天线方法对微波喇叭天线发射的微波电场实现精确的校准,并以此为基础通过超外差接收技术成功探测到本地场与信号场所形成的拍频信号,得到了拍频光电信号与信号场强度之间的线性关系。最终通过实验噪声基底的噪声功率谱得到三红外光里德堡铷原子微波测量的极限灵敏度为37.5(5.5) nV·■。采用三束红外光激发的方法为研制小型里德堡原子微波电场探测仪器奠定了物理基础。  相似文献   
484.
电动飞机电推进系统采用高效永磁同步电机作为主驱动,配备矢量控制器。飞机在巡航过程中不可避免地会遭遇突风,影响飞机的稳定飞行。通过建立电动飞机在巡航阶段遭遇突风时的空气动力学模型和电推进系统的动态响应数学模型,并对模型进行求解,给出了突风气象条件下电推进系统速度PI控制参数的设定方法。以某双座电动飞机的电推进系统为研究对象,采用MATLAB仿真和样机地面试验对速度PI控制进行了仿真分析和试验测试,对比了未考虑和考虑突风气象条件下的速度PI控制器的动态特性。仿真和样机试验结果表明:当飞机遭遇突风时,采用考虑突风气象条件的速度PI控制参数可以有效地降低螺旋桨的转速波动范围。  相似文献   
485.
针对电动汽车机械式传感器在复杂工作环境下易失效的问题,将基于模型参考自适应(MRAS)的无速度传感器技术应用于电动汽车中。针对传统MRAS无速度传感器控制存在的转子位置估计相位延迟较大、转速估计误差较大等问题,将模型预测控制算法应用到MRAS中。参考模型选用永磁同步电机(PMSM)电流磁链方程,可调模型选取电压磁链方程,代价函数是磁链的差值,待估计参数选择转子位置。与传统MRAS无速度传感器控制算法相比,转速、转子位置估计结果更加精确,估计误差较小,动态性能和稳态性能优良。通过仿真和试验验证了算法的可行性和有效性。  相似文献   
486.
建立磁悬浮电励磁三相直线同步电机(MSEETPLSM)的连续时间参数型状态空间方程数学模型,利用前向一阶差分方法将连续时间数学模型离散化成离散时间参数型状态空间方程数学模型,再利用z变换写成递推最小二乘算法标准形式的数学模型。利用递推最小二乘算法在初级转子静止状态下辨识出MSEETPLSM的电阻及自感参数。利用计算机数值仿真软件仿真MSEETPLSM参数的离线辨识算法,得到MSEETPLSM的初级与次级电阻与电感时域辨识曲线,仿真曲线收敛速度较快且辨识精度较高。仿真结果验证了该参数离线辨识算法的有效性。  相似文献   
487.
电控固体推进剂点火技术研究   总被引:2,自引:0,他引:2  
采用一种层状电极式点火装置,分别研究了电极材料、电极形状和电极极性对电控固体推进剂点火过程的影响。试验结果表明,电极材料、推进剂端面电流密度和电极极性是影响电控固体推进剂点火过程的重要因素,当推进剂两端面电流密度相同时,采用不同材料的电极优先点火顺序依次为钛、铝、石墨、铜。当两端电极材料相同时,ESP始终在电流密度较大的一端点火,且电流密度越大,点火效果越好,临界点火电压越低;当两电极与药柱端面的接触面积比为1∶1和0.64∶1时,ESP优先在正极端点火;但当两电极与药柱端面的接触面积比为0.16∶1时,ESP在电流密度较大的一端点火。电控固体推进剂能通过电压控制实现多次点火、熄火循环。  相似文献   
488.
电阻接地状态下星用电路板深层充电仿真方法   总被引:2,自引:1,他引:1  
文章基于Monte Carlo方法和有限元方法,对双层和4层电路板覆铜层通过电阻接地时的深层充电进行仿真分析,详细讨论了空间各向同性电子通量模型、电路板背面和中间覆铜层分别通过电阻接地时的计算方法和边界条件,以及不同接地条件下有限元矩阵方程的建立;最终定量计算了电阻阻值对电路板充电结果的影响。仿真结果表明,较之完全接地情况,通过电阻接地会增加充电电场和电势,最大电势深度也相应变化;电阻接地层电势和阻值呈线性关系;当接地电阻为109?量级及以下时,其对深层充电的影响可以忽略,验证了NASA-HDBK-4002A手册中设计指南的正确性。  相似文献   
489.
霍尔电推进技术的发展与应用   总被引:2,自引:0,他引:2  
霍尔电推进具有推力密度大、推力功率比大、比冲高及系统可靠等优点,在20世纪60~70年代突破关键技术、完成空间试验后,在俄、美、欧等航天器上获得大量应用,执行位置保持、轨道转移、轨道调整和深空探测主推进等任务。目前,100 W级到5 k W级功率的霍尔推力器已经实现在轨应用,100 k W功率的霍尔推力器已在研制中。针对未来载人深空探测、GEO卫星、低轨和超低轨卫星及轨道机动飞行器等任务需求,霍尔电推进朝着更大功率包络,更强多模式调节能力,更高性能,更长寿命及推进剂多样化等方向发展。在分析霍尔电推进技术特点和适用任务后,对国内外霍尔电推进技术的发展现状、任务应用等进行了综述,最后对霍尔电推进的发展趋势进行了展望。  相似文献   
490.
提出了一种新型结构的6/13极定子模块式轴向磁场磁通切换永磁(AFFSPM)电机。该电机具有结构紧凑、转矩密度大、效率高和容错性能强等特点。分析了AFFSPM电机结构和工作原理,推导了AFFSPM电机的数学模型。利用MATLAB/Simulink仿真软件搭建了AFFSPM电机控制系统仿真模型,分别对滑模速度控制和比例谐振控制的控制策略进行仿真研究,分析对比AFFSPM电机的转速、转矩和三相电流的波形。仿真结果表明,与比例谐振控制策略相比而言,滑模控制策略下该新型AFFSPM电机控制系统具有较好的静态和动态性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号