首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1937篇
  免费   323篇
  国内免费   274篇
航空   497篇
航天技术   809篇
综合类   63篇
航天   1165篇
  2024年   25篇
  2023年   75篇
  2022年   82篇
  2021年   106篇
  2020年   90篇
  2019年   81篇
  2018年   117篇
  2017年   64篇
  2016年   76篇
  2015年   107篇
  2014年   170篇
  2013年   110篇
  2012年   147篇
  2011年   162篇
  2010年   114篇
  2009年   118篇
  2008年   110篇
  2007年   118篇
  2006年   81篇
  2005年   80篇
  2004年   63篇
  2003年   58篇
  2002年   38篇
  2001年   64篇
  2000年   40篇
  1999年   22篇
  1998年   32篇
  1997年   22篇
  1996年   21篇
  1995年   19篇
  1994年   16篇
  1993年   16篇
  1992年   15篇
  1991年   16篇
  1990年   29篇
  1989年   7篇
  1988年   14篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有2534条查询结果,搜索用时 15 毫秒
531.
Current satellite imaging systems offer a trade-off between high spatial and high spectral resolution providing panchromatic images at a higher spatial resolution and multispectral images at a lower spatial resolution but rich in spectral information while a wide range of applications need the highest level of this information, simultaneously. Image fusion techniques as means of enhancing the information content of initial panchromatic and multispectral images produce new images, titled pan-sharpened, which inherent the advantages of the initial images. Considering the impact of fusion accuracy on the quality of corresponding applications, it is necessary to evaluate the quality of these processed images. During the last decade, a lot of quality evaluation metrics have been proposed which are mostly inspired by traditional image quality metrics. These methods are mostly based on applying quality metrics at the pixel level and evaluating final quality value based on averaging of obtained metric values through the whole image. However, obtained results clearly show that the behaviour of image fusion quality is inconsistent amongst different image objects. In this article, by applying image fusion quality metrics (IFQMs) to image objects, an object-level strategy for quality assessment of the image fusion process is proposed. The proposed strategy is applied to different satellite imagery covering residential and agricultural areas. Experimental results show higher capabilities of object-level quality assessment strategy in the quality assessment of the fusion process. Evaluating fusion quality at the object level provides the potential of fusion quality assessment for each individual image object in compliance with different parameters such as the type of objects and the effective size of objects in data set.  相似文献   
532.
This work describes the design and optimization of spacecraft swarm missions to meet spatial and temporal visual mapping requirements of missions to planetary moons, using resonant co-orbits. The algorithms described here are a part of Integrated Design Engineering and Automation of Swarms (IDEAS), a spacecraft swarm mission design software that automates the design trajectories, swarm, and spacecraft behaviors in the mission. In the current work, we focus on the swarm design and optimization features of IDEAS, while showing the interaction between the different design modules. In the design segment, we consider the coverage requirements of two general planetary moon mapping missions: global surface mapping and region of interest observation. The configuration of the swarm co-orbits for the two missions is described, where the participating spacecraft have resonant encounters with the moon on their orbital apoapsis. We relate the swarm design to trajectory design through the orbit insertion maneuver performed on the interplanetary trajectory using aero-braking. We then present algorithms to model visual coverage, and collision avoidance in the swarm. To demonstrate the interaction between different design modules, we relate the trajectory and swarm to spacecraft design through fuel mass, and mission cost estimations using preliminary models. In the optimization segment, we formulate the trajectory and swarm design optimizations for the two missions as Mixed Integer Nonlinear Programming (MINLP) problems. In the current work, we use Genetic Algorithm as the primary optimization solver. However, we also use the Particle Swarm Optimizer to compare the optimizer performance. Finally, the algorithms described here are demonstrated through numerical case studies, where the two visual mapping missions are designed to explore the Martian moon Deimos.  相似文献   
533.
In this paper, a general new methodology is presented for the orbital reconfiguration of satellite constellations on the basis of Lambert targeting theorem. In view of the cost and risk reduction, it is very important to consider the problem of satellite constellation reconfiguration with the two constraints of overall mission cost minimization and the desired final configuration. Hence, the dependent non-simultaneous deployment approach is proposed to minimize overall fuel cost. Despite the fact that the satellites deploy in a non-simultaneous manner, supplementary phasing maneuvers on the target orbital pattern to achieve the desired orbital configuration are avoided. Moreover, a novel idea is presented to optimize the flight of satellites, which plays an important role in complying with the constraint of overall fuel cost minimization as much as possible. In order to achieve the global optimal solution of the satellite constellation reconfiguration problem, the efficient hybrid Particle Swarm Optimization/Genetic Algorithm (PSO/GA) technique, is implemented. Finally, to indicate the superiority of the presented method, a comparison to the simultaneous maneuver viewpoint is made on a number of representative cases. The obtained results imply significant reduction of reconfiguration costs by employing the proposed method.  相似文献   
534.
Orbital robotics focuses on a variety of applications, as e.g. inspection and repair activities, spacecraft construction or orbit corrections. On-Orbit Servicing (OOS) activities have to be closely monitored by operators on ground. A direct contact to the spacecraft in Low Earth Orbit (LEO) is limiting the operational time of the robotic application. Therefore, geostationary satellites are desirable to relay the OOS signals and extend the servicing time window. A geostationary satellite in the communication chain not only introduces additional boundary conditions to the mission but also increases the time delay in the system. The latter is not very critical if the servicer satellite is operating autonomously. However, if the servicer is operating in a supervised control regime with a human in the loop, the increased time delay will have an impact on the operator’s task performance.  相似文献   
535.
The aim of this paper is to quantify the performance of a flat solar sail to perform a double angular momentum reversal maneuver and produce a new class of two-dimensional, non-Keplerian orbits in the ecliptic plane. For a given pair of orbital parameters, the orbital period and the perihelion distance, it is possible to find the minimum solar sail characteristic acceleration required to fulfil a double angular momentum reversal trajectory. This problem is addressed using an optimal formulation and is solved through an indirect approach. The new trajectories are symmetrical with respect to the sun-perihelion line and exhibit a bean-like shape. Two main difficulties must be properly taken into account. On one side the sail is required to perform a rapid reorientation maneuver when it approaches the perihelion. Suitable simulations have shown that such a maneuver is feasible. In the second place the new trajectories require the use of high performance solar sails. For example, assuming an orbital period equal to 5 years, the required solar sail characteristic acceleration is greater than 3.4 mm/s2. Such a value, although beyond the currently available sail performance, is comparable to what is required by the original concept of H-reversal maneuvers introduced by Vulpetti in 1996.  相似文献   
536.
Sending man to Mars has been a long-held dream of humankind. NASA plans human planetary explorations using approaches that are technically feasible, have reasonable risks and have relatively low costs. This study presents a novel Multi-Attribute Decision Making (MADM) model for evaluating a range of potential mission scenarios for the human exploration of Mars. The three alternatives identified by the Mission Operations Directorate (MOD) at the Johnson Space Center (JSC) include split mission, combo lander and dual scenarios. The proposed framework subsumes the following key methods: first, the conjunction method is used to minimize the number of alternative mission scenarios; second, the Fuzzy Risk Failure Mode and Effects Analysis (RFMEA) is used to analyze the potential failure of the alternative scenarios; third, the fuzzy group Real Option Analysis (ROA) is used to estimate the expected costs and benefits of the alternative scenarios; and fourth, the fuzzy group permutation approach is used to select the optimal mission scenario. We present the results of a case study at NASA’s Johnson Space center to demonstrate: (1) the complexity of mission scenario selection involving subjective and objective judgments provided by multiple space exploration experts; and (2) a systematic and structured method for aggregating quantitative and qualitative data concerning a large number of competing and conflicting mission events.  相似文献   
537.
轻型通用飞机起飞总重估算方法研究   总被引:1,自引:0,他引:1  
飞机的起飞总重是飞机的重要设计参数,概念设计阶段首先要做的重要工作之一就是确定飞机的起飞总重。以四人座低速活塞螺旋桨飞机为例,采用任务剖面法和商载航程法分别对起飞总重进行了估算,并对两种方法进行了修正,在此基础上,取两个计算结果的平均值作为最终的起飞总重估算值。通过与对比机型的比较,验证修正后的计算方法和结果是准确合理的,为通用飞机起飞总重的确定和选择提供了参考。  相似文献   
538.
随着中国北斗三号卫星导航系统(BDS-3)全面建成与开通,北斗卫星导航系统已步入了新发展阶段,基于BDS-3实现全方位、多层次、高精度应用已成为地学研究中一项基本任务。利用全球最新均匀分布的10个MGEX跟踪站,分别从24 h内接收到的卫星数、卫星位置精度因子(PDOP)、卫星数据解算完整率和双频非组合精密单点定位(PPP)静态/动态定位精度等方面系统深入地评估了BDS-3在全球范围内的可用性。结果表明,测站对卫星跟踪能力与配备的接收机类型和区域位置有强相关性,单BDS-3卫星在全球范围内具有较强的连续定位能力,当使用SEPT POLARX5和JAVAD TRE_3接收机的情况下,数据解算完整率可达100%。此外,水平方向和高程方向定位精度分别优于2 cm和3 cm,并且在联合使用BDS-2和BDS-3定位的条件下,可使得静态定位精度在东、北和高程方向进一步提升37.6%,25.3%和38.9%。  相似文献   
539.
On February 13th 2012, the LARES satellite of the Italian Space Agency (ASI) was launched into orbit with the qualification flight of the new VEGA launcher of the European Space Agency (ESA). The payload was released very accurately in the nominal orbit. The name LARES means LAser RElativity Satellite and summarises the objective of the mission and some characteristics of the satellite. It is, in fact, a mission designed to test Einstein's General Relativity Theory (specifically ‘frame-dragging' and Lense-Thirring effect). The satellite is passive and covered with optical retroreflectors that send back laser pulses to the emitting ground station. This allows accurate positioning of the satellite, which is important for measuring the very small deviations from Galilei–Newton's laws. In 2008, ASI selected the prime industrial contractor for the LARES system with a heavy involvement of the universities in all phases of the programme, from the design to the construction and testing of the satellite and separation system. The data exploitation phase started immediately after the launch under a new contract between ASI and those universities. Tracking of the satellite is provided by the International Laser Ranging Service. Due to its particular design, LARES is the orbiting object with the highest known mean density in the solar system. In this paper, it is shown that this peculiarity makes it the best proof particle ever manufactured. Design aspects, mission objectives and preliminary data analysis will be also presented.  相似文献   
540.
针对具有星间链路的导航星座在卫星节点或链路失效情况下的重构优化设计问题,提出了一种基于遗传算法的设计方法。首先,根据导航星座的功能需求与设计约束,建立了星座综合重构优化设计模型。其次,提出了基于遗传算法的综合优化设计方法,并根据问题特性对遗传算法的具体操作进行了修改。最后,应用该方法对Walker 24/3/2构型星座及网状星间网络在节点和链路混合故障模式下的重构进行了优化设计。结果表明,基于该方法重构后的星座与网络拓扑性能能够得到一定程度的改善,证明了方法的可行性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号