首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   3篇
  国内免费   2篇
航空   16篇
航天技术   9篇
综合类   2篇
航天   8篇
  2023年   2篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   7篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1992年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
11.
随着中国传统工业化的发展,人口问题、失业问题、资源问题与生态危机问题日益突出,并且成为制约中国经济进一步发展的障碍。伴随着中国新型工业化道路的探索,基于中国自然资源秉赋特征,发展就业主导型产业与高素质产业成为中国新型工业化的必然选择。当然,新型工业化不会自然而然发生,它需要新型文化来引导。毫无疑问,以对社会的善、对自然的善与对人的善为内涵的生态文化是新型工业化的文化底蕴。从某种意义上讲,新型工业化是文化转向、技术创新转向、体制转向与产业转型的统一。  相似文献   
12.
智慧城市是城市信息化建设的新目标,智慧城市更加聚焦民生与服务、更加强调感知与物联,是落实科学发展观、加快经济增长方式转变、构建和谐社会的迫切需要。研究借鉴西方智慧城市的经验和成果,并结合廊坊实际情况,提出一系列的建议措施,推动廊坊市经济的科学发展和文明的进步。  相似文献   
13.
湖北省生态文明建设区域差异分析   总被引:1,自引:0,他引:1  
自党的“十七大”明确提出建设生态文明是实现全面建设小康社会奋斗目标的新要求以来,全国掀起了生态文明建设理论研究和实践活动的热潮.但是我国幅员辽阔,各地区之间资源环境的区域差异明显,这严重制约了生态文明建设的整体推进.以湖北省生态文明建设的区域差异为研究对象,首先分析了湖北省生态文明建设区域差异的分布特征、结构特征和数量特征;其次从自然地理条件、历史基础、产业结构、政策倾斜等方面分析了区域差异形成的原因;最后利用最近几年的统计数据分析了湖北省生态文明建设区域差异的走向.研究发现,最近几年来,湖北省各地区资源条件、经济效率和人文发展水平的绝对差异在不断扩大,生态环境质量的相对差异也在不断扩大.但是根据不平衡增长理论可以判断,不久的将来湖北生态文明建设的区域差异将逐渐缩小,最终出现生态文明建设区域协调发展的趋势.  相似文献   
14.
以反映热机循环输出和损失之比的生态学性能系数ECOP为目标,用有限时间热力学的方法分析了具有热阻、热漏的布雷顿与斯特林联合循环的性能;导出了在牛顿传热律下布雷顿循环的ECOP的解析式,并通过数值算例得到了它们之间的关系;分析并研究了各种参数对联合循环性能的影响。  相似文献   
15.
水土资源的安全程度和承载能力直接关系到区域的社会经济发展和生态系统安全,二者对生态格局的演变产生深刻的影响.以塔里木河中游地区的轮台县为例,从水土资源安全的角度出发,构建了研究区的生态安全评价指标体系,并且在GIS、RS和其他数据资料的支持下,对研究区1992-2008年16a间的生态安全状况进行了评价.研究认为:塔里木河中游地区的生态安全状况已由预警区转至中警区,生态环境整体上处于不断恶化的趋势.  相似文献   
16.
自生态文明理念提出以来,国内外学术界对生态文明及其相关问题进行了深入且具有开创性的研究和探索,并取得了大量的理论成果.文章对国内生态文明的研究以及生态文明与中国特色社会主义关系的研究现状进行分析与梳理,指出现有研究中所存在的问题并作简要评论.  相似文献   
17.
环境问题的日益凸显使很多学者开始从文化角度对其进行反思,根本的一点就是如何重新审视和确立人与自然的关系。马克思恩格斯科学地揭示了人与自然的辩证关系,形成了马克思主义的生态文明思想。梳理马克思恩格斯的生态文明思想,对反思当代环境问题具有一定的现实意义。  相似文献   
18.
The purpose of the research is to develop a photo-bioreactor which may produce algae protein and oxygen for future astronauts in comparatively long-term exploration, and remove carbon dioxide in a controlled ecological life support system. Based on technical parameters and performance requirements, the project planning, design drafting, and manufacture were conducted. Finally, a demonstration test for producing algae was done. Its productivity for micro-algae and performance of the photo-bioreactor were evaluated. The facility has nine subsystems, including the reactor, the illuminating unit, the carbon dioxide (CO2) production unit and oxygen (O2) generation unit, etc. The demonstration results showed that the facility worked well, and the parameters, such as energy consumption, volume, and productivity for algae, met with the design requirement. The density of algae in the photo-bioreactor increased from 0.174 g (dry weight) L−1 to 4.064 g (dry weight) L−1 after 7 days growth. The principle of providing CO2 in the photo-bioreactor for algae and removing O2 from the culture medium was suitable for the demand of space conditions. The facility has reasonable technical indices, and smooth and dependable performances.  相似文献   
19.
To achieve sustainable, healthy closed ecological systems requires solutions to challenges of closing the water cycle – recycling wastewater/irrigation water/soil medium leachate and evaporated water and supplying water of required quality as needed for different needs within the facility. Engineering Biosphere 2, the first multi-biome closed ecological system within a total airtight footprint of 12,700 m2 with a combined volume of 200,000 m3 with a total water capacity of some 6 × 106 L of water was especially challenging because it included human inhabitants, their agricultural and technical systems, as well as five analogue ecosystems ranging from rainforest to desert, freshwater ecologies to saltwater systems like mangrove and mini-ocean coral reef ecosystems. By contrast, the Laboratory Biosphere – a small (40 m3 volume) soil-based plant growth facility with a footprint of 15 m2 – is a very simplified system, but with similar challenges re salinity management and provision of water quality suitable for plant growth. In Biosphere 2, water needs included supplying potable water for people and domestic animals, irrigation water for a wide variety of food crops, and recycling and recovering soil nutrients from wastewater. In the wilderness biomes, providing adequately low salinity freshwater terrestrial ecosystems and maintaining appropriate salinity and pH in aquatic/marine ecosystems were challenges. The largest reservoirs in Biosphere 2 were the ocean/marsh with some 4 × 106 L, soil with 1 to 2 × 106 l, primary storage tank with 0 to 8 × 105 L and storage tanks for condensate and soil leachate collection and mixing tanks with a capacity of 1.6 × 105 L to supply irrigation for farm and wilderness ecosystems. Other reservoirs were far smaller – humidity in the atmosphere (2 × 103 L), streams in the rainforest and savannah, and seasonal pools in the desert were orders of magnitude smaller (8 × 104 L). Key technologies included condensation from humidity in the air handlers and from the glass space frame to produce high quality freshwater, wastewater treatment with constructed wetlands and desalination through reverse osmosis and flash evaporation were key to recycling water with appropriate quality throughout the Biosphere 2 facility. Wastewater from all human uses and the domestic animals in Biosphere 2 was treated and recycled through a series of constructed wetlands, which had hydraulic loading of 0.9–1.1 m3 day−1 (240–290 gal d−1). Plant production in the wetland treatment system produced 1210 kg dry weight of emergent and floating aquatic plant wetland which was used as fodder for the domestic animals while remaining nutrients/water was reused as part of the agricultural irrigation supply. There were pools of water with recycling times of days to weeks and others with far longer cycling times within Biosphere 2. By contrast, the Laboratory Biosphere with a total water reservoir of less than 500 L has far quicker cycling rapidity: for example, atmospheric residence time for water vapor was 5–20 min in the Laboratory Biosphere vs. 1–4 h in Biosphere 2, as compared with 9 days in the Earth’s biosphere. Just as in Biosphere 2, humidity in the Laboratory Biosphere amounts to a very small reservoir of water. The amount of water passing through the air in the course of a 12-h operational day is two orders of magnitude greater than the amount stored in the air. Thus, evaporation and condensation collection are vital parts of the recycle system just as in Biosphere 2. The water cycle and sustainable water recycling in closed ecological systems presents problems requiring further research – such as how to control buildup of salinity in materially closed ecosystems and effective ways to retain nutrients in optimal quantity and useable form for plant growth. These issues are common to all closed ecological systems of whatever size, including planet Earth’s biosphere and are relevant to a global environment facing increasing water shortages while maintaining water quality for human and ecosystem health. Modular biospheres offer a test bed where technical methods of resolving these problems can be tested for feasibility.  相似文献   
20.
近年来无人机航拍技术逐步应用于野生动物保护,在很大程度上提高了考察效率。由于航拍图像与地面拍摄图像的特征差异较大,加之野生动物生存环境背景复杂,目前没有通用的方法可直接应用于野生动物航拍图像的检测与统计。本文回顾了智能检测和统计技术近年来的发展,针对无人机航拍野生动物图像的大场景、小目标、多尺度、复杂背景等特点,介绍了无人机航拍动物群数据集的选取与建立方法,以及基于深度学习的检测与统计方法,并进行了深层次地分析,归纳了各类方法的优势和可应用场景,总结了各方法的特点和适用范围,同时针对存在的问题给出了改进方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号