首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4791篇
  免费   907篇
  国内免费   1085篇
航空   4073篇
航天技术   1141篇
综合类   685篇
航天   884篇
  2024年   13篇
  2023年   90篇
  2022年   166篇
  2021年   224篇
  2020年   243篇
  2019年   270篇
  2018年   267篇
  2017年   279篇
  2016年   304篇
  2015年   296篇
  2014年   362篇
  2013年   302篇
  2012年   368篇
  2011年   389篇
  2010年   309篇
  2009年   340篇
  2008年   292篇
  2007年   322篇
  2006年   253篇
  2005年   235篇
  2004年   201篇
  2003年   209篇
  2002年   130篇
  2001年   130篇
  2000年   120篇
  1999年   120篇
  1998年   88篇
  1997年   58篇
  1996年   56篇
  1995年   55篇
  1994年   61篇
  1993年   49篇
  1992年   37篇
  1991年   46篇
  1990年   34篇
  1989年   29篇
  1988年   23篇
  1987年   11篇
  1986年   2篇
排序方式: 共有6783条查询结果,搜索用时 15 毫秒
801.
与金属材料桨叶相比,复合材料桨叶因具有更加优良的抗疲劳性能而被广泛应用到直升机旋翼上。但由于复合材料破坏机理复杂,疲劳性能分散,影响因素众多,导致复合材料桨叶疲劳现象尚处于研究探索之中,在复合材料的微观失效机制与宏观结构的力学性能之间仍然缺少一座桥。鉴于此,文章利用典型复合材料试样的拉伸疲劳实验数据,建立了基体裂纹、纤维断裂和界面脱胶等损伤变量累积模型,从断裂能的角度出发构建了基体裂纹密度、纤维断裂面积与复合材料属性之间的函数关系,分析了基体裂纹密度、纤维断裂面积等损伤变量对复合材料工程性能参数的影响。利用复合材料宏观力学理论,研究了各物理损伤变量对桨叶刚度特性的影响,采用连续损伤变量的状态方程建立了复合材料桨叶的损伤演化模型,这种以有理多项式为状态转移函数微分模型能很好地体现复合材料桨叶在疲劳初期和疲劳末期刚度快速损伤的现象。  相似文献   
802.
机载移动端场面引导软件设计与仿真研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了减轻飞行员在繁忙机场场面运行的工作负荷,提升场面运行安全与效率,设计了一种基于移 动电子设备运行的场面引导软件。其采用可扩展架构和模块化功能设计,通过无线通信网络与综合场面监视系 统交联,实现场面引导功能。仿真测试表明,机载移动端场面引导软件能够为飞机在场面滑行操作提供路径引 导信息和冲突告警提示,可提升运行效率和安全性,具有一定的使用价值。  相似文献   
803.
为了实现多重应力下滚动轴承的剩余寿命预测,有效利用不用应力下的退化数据,提出了一种基于加速模型和贝叶斯(Bayesian)理论的滚动轴承剩余寿命预测方法。通过拟合优度检验和威布尔(Weibull)概率图检验法对滚动轴承试验中的数据进行有效性分析。利用switching Kalman filters(SKF)判断滚动轴承各时刻的退化状态。当滚动轴承进入加速退化时,用指数模型拟合轴承退化过程,利用广义线性对数模型表示退化模型参数与应力的关系,根据修正后的轴承实时退化数据利用贝叶斯算法更新模型参数,得到滚动轴承剩余寿命的概率密度函数,从而实现滚动轴承剩余寿命预测。采用XJTU-SY轴承数据集进行验证,预测结果的均方根误差在20 min以内,证明该方法能够有效预测滚动轴承的剩余寿命。  相似文献   
804.
为了深入研究低排放燃烧室点火联焰规律,在全新的环形模型燃烧室中开展了点火模拟和试验研究。点火模拟采用随机粒子追踪方法,能够基于时均冷态流场的仿真结果快速模拟火焰传播过程。环形燃烧室包含16个中心分级旋流器,仅向预燃级通入丙烷,用于模拟航空发动机低排放燃烧室点火状态下的空气燃油分级。试验采用PIV技术测量3个头部区域流场,利用高速相机拍摄火焰CH*/C2*基团化学发光信号。对多个流量和当量比条件下的联焰过程、联焰时间和传焰速率进行了分析,试验和模拟的结果均表明:环形燃烧室内火焰双向传播,燃烧室内外环流速度差异导致了双向火焰传播速度差,传焰速率随燃烧室湍流速度和当量比的增加而增加。点火模型很好地捕捉了环形燃烧室点火动态,所得传焰速率也符合湍流火焰传播规律,表明该模型具有较强预测能力。  相似文献   
805.
针对直升机绞车收放时缆位保持问题,建立了负载出水回收进舱阶段缆位的动力学模型。由于浮力与洋流作用突然消失,负载出水后发生摆动,将负载的摆动作为带有理想约束的质点系动力学系统,采用拉格朗日方程建立动力学模型。考虑直升机悬停提升的情况进行仿真,仿真结果表明建立的数学模型能够较好的模拟负载摆动时的缆位变化。  相似文献   
806.
范新亮  王彤  夏遵平 《航空学报》2020,41(12):223834-223834
针对实际结构有限元模型(FEM)的建模误差通常仅存在于局部区域,提出了一种对局部结构单独进行模型修正的方法。首先,根据频响函数(FRF)解耦理论得到由残余结构频响函数与包含待修正参数的局部结构动刚度所重构的整体结构频响函数的拟合值,然后通过迭代优化使其与测量值的残差最小化,从而得到参数的极大似然估计。在此基础上,将残差关于参数的灵敏度以局部结构动力学矩阵表示,建立了模型修正的基本方程,利用整体结构的测试数据即可直接对分离出来的局部结构进行模型修正。最后,对喷气式飞机和三角机翼飞机分别进行了数值模拟和实验研究,验证了所提方法的可行性和有效性。结果表明,所提方法可以成功地用于仅局部区域含有建模误差的实际结构有限元模型的修正,修正后的有限元模型的动态特性与实际结构有较好的一致性。  相似文献   
807.
黄景帅  李永远  汤国建  包为民 《航空学报》2020,41(9):323786-323786
针对机动模式复杂多变的高超声速滑翔目标跟踪问题,提出了一种机动频率自适应跟踪方法。采用介于常速度和常加速度模型之间的Singer模型来表征目标气动力加速度的变化,从而建立跟踪系统的状态方程。根据地基雷达量测量获得系统的量测方程,鉴于距离和角度信息的量级相差较大将其由球形量测量转换为位置量测量。为了适应高超声速滑翔目标灵活多样的机动模式,基于正交性原理和无迹卡尔曼滤波算法实现了Singer模型中机动频率参数的自适应。利用滤波信息计算得到能够反映状态模型误差大小的调整因子,用于放大Singer模型中的机动频率,进而调整状态方程的过程噪声以降低模型误差。通过对2种典型机动轨迹的跟踪仿真,并与交互式多模型等方法进行比较,结果表明所提方法的跟踪精度高、计算量小,能够较好地适应阶跃机动和连续幅值变化的机动。  相似文献   
808.
史朝印  吕震宙  李璐祎  王燕萍 《航空学报》2020,41(1):223123-223123
对于复杂失效域和小失效概率耦合的可靠性分析问题,本文提出了一种交叉熵重要抽样(CE-IS)方法结合自适应Kriging (AK)代理模型的求解方法(CE-IS-AK)。所提方法基于交叉熵原理,用混合高斯模型逐步逼近最优重要抽样密度函数,并采用AK模型协助逼近过程中混合高斯模型的参数的更新,从而提高了CE-IS方法的计算效率。另外,本文还改进了CE-IS方法的收敛准则,避免了方法的冗余迭代,扩大了方法的适用范围。由于在CE-IS方法中引入了AK模型,因此,本文方法所构建的重要抽样函数在保证精度的基础上提高了效率。相较于AK-MCS方法,本文方法中引入了重要抽样的思想,因此在Kriging训练点数目基本相同的情况下,大幅缩减小失效概率计算时样本池规模,并且由于利用了混合高斯模型,因而对多失效域具有较好的适用性。算例分析也证明了本文所提方法的优越性。  相似文献   
809.
蜂窝材料因具备广阔的结构设计空间,已广泛应用于航空航天等工业领域。探索蜂窝元胞的组织结构、组分性质与材料整体性能之间的关系有助于新型功能性材料的设计开发。本文从非平面Vertex模型的势能形式出发,结合蜂窝薄壁圆管拉伸时的轴对称特征,通过变分法得到了圆管拉伸时母线满足的控制方程,揭示了边界效应是蜂窝状薄壁圆管受拉时产生内陷的原因,并结合母线控制方程的若干特解,考察了非平面Vertex模型势能形式中包含的材料性质参数与圆管拉伸后内陷程度及范围的关系。研究还指出,蜂窝材料的材料性质包含在非平面Vertex模型的势能形式中,为蜂窝状材料整体性能的研究提供了一种新的思路。  相似文献   
810.
K-M(Keenan-Motley)模型将单墙固定损耗值相加来计算室内无线信号穿透多墙的总损耗值,存在较大误差。针对该问题选取多种室内场景分别进行连续波(Continuous Wave,CW)测试,对无线信号穿墙损耗的影响因素和变化规律进行分析,提出了一种基于人工神经网络的室内无线模型穿墙损耗校正方法,对预处理后的测试数据进行训练并建立预测模型。经验证该预测模型符合校正判别准则,在实际场景下具有良好的预测准确度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号