首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   13篇
  国内免费   7篇
航空   70篇
航天技术   75篇
综合类   6篇
航天   34篇
  2024年   1篇
  2023年   2篇
  2021年   1篇
  2020年   5篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   17篇
  2013年   10篇
  2012年   13篇
  2011年   10篇
  2010年   7篇
  2009年   10篇
  2008年   14篇
  2007年   9篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   11篇
  1998年   5篇
  1997年   1篇
  1995年   4篇
  1994年   13篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
排序方式: 共有185条查询结果,搜索用时 62 毫秒
181.
刘振皓  任方  王骁峰  秦朝红  贾洲侠 《宇航学报》2016,37(12):1425-1431
为揭示跨声速阶段仪器舱附近脉动压力的空间相关特性,以某旋成体模型为研究对象,基于风洞试验获取了仪器舱附近脉动压力载荷分布规律,计算了测点间的脉动压力空间相关系数。通过曲线拟合与归一化处理,获得了模型仪器舱脉动压力空间相关特性曲线,并研究了攻角、马赫数与雷诺数对空间相关性的影响。结果表明,该模型仪器舱脉动压力空间相关特性具有波动与衰减的特点,随着流动复杂程度的增加,其相关性逐渐降低。同时,在跨声速范围内,该模型仪器舱脉动压力空间相关特性对马赫数以及较高的雷诺数比较敏感。对脉动压力空间相关特性的研究,为飞行器结构响应分析以及载荷环境预示提供了支撑。  相似文献   
182.
本文在提出测量精度、故障检测性和故障识別性指标的基础上,研究了冗余测量元件的安装型式和最佳安装方位;提出了一种故障冗余处理方法,以提高故障识别的可靠性,并指出了正交-斜装组合型结构,在飞行器冗余测量中,是一种较好的安装结构。  相似文献   
183.
Although static loop models are often used to describe the structure of coronal loops, it is evident on both observational and theoretical grounds that mass motions play a crucial role in the physics of the corona and transition region. First we review the observations of emission-line broadening and wavelength shifts, which imply the presence of random motions and systematic downflows in coronal loops. Some discrepancies in the observations are discussed. It is argued that velocities due to gas pressure gradients are the most likely explanation for the observed flows. A number of models that have been proposed for these motions are reviewed. The implications of the various models on observations of the corona and transition region by SOHO are discussed.  相似文献   
184.
The Sun cubE onE (SEE) is a 12U CubeSat mission proposed for a phase A/B study to the Italian Space Agency that will investigate Gamma and X-ray fluxes and ultraviolet (UV) solar emission to support studies in Sun-Earth interaction and Space Weather from LEO. More in detail, SEE’s primary goals are to measure the flares emission from soft-X to Gamma ray energy range and to monitor the solar activity in the Fraunhofer Mg II doublet at 280 nm, taking advantage of a full disk imager payload. The Gamma and X-ray fluxes will be studied with unprecedented temporal resolution and with a multi-wavelength approach thanks to the combined use of silicon photodiode and silicon photomultiplier (SiPM) -based detectors. The flare spectrum will be explored from the keV to the MeV range of energies by the same payload, and with a cadence up to 10 kHz and with single-photon detection capabilities to unveil the sources of the solar flares. The energy range covers the same bands used by GOES satellites, which are the standard bands for flare magnitude definition. At the same time SiPM detectors combined with scintillators allow to cover the non-thermal bremsstrahlung emission in the gamma energy range. Given its UV imaging capabilities, SEE will be a key space asset to support detailed studies on solar activity, especially in relation to ultraviolet radiation which strongly interacts with the upper layers of the Earth’s atmosphere, and in relation to space safety, included in the field of human space exploration. The main goal for the UV payload is to study the evolution of the solar UV emission in the Mg II band at two different time scales: yearly variations along the solar cycle and transient variations during flare events. The Mg II index is commonly used as a proxy of the solar activity in the Sun-as-a-star paradigm, in which solar irradiance variations in the UV correlate with the variations in stratospheric ozone concentrations and other physical parameters of the Earth high atmosphere. SEE data will be used together with space and ground-based observatories that provide Solar data (e.g. Solar Orbiter, IRIS, GONG, TSST), high energy particle fluxes (e.g. GOES, MAXI, CSES) and geomagnetic data in a multi-instrument/multi-wavelength/multi-messenger approach.  相似文献   
185.
The European Stratospheric Balloon Observatory (ESBO) initiative aims at simplifying the access to stratospheric balloon missions. We plan to provide platforms and support with instrument design in order to support scientists. During the design process, the inevitable question of qualification for the harsh flight conditions arises. Unfortunately, there is no existing standard for qualification of stratospheric ballooning hardware. Thus, we developed a qualification procedure for use within ESBO and similar projects.In this paper, we present our analysis of the environmental conditions in the stratosphere. While conditions at typical balloon float altitudes are similar to the space environment, there are also some relevant differences. For example, the thermal environment is dominated by radiation and thermal conduction, but the remaining atmosphere still supports a certain amount of convection. The remaining atmospheric pressure in the stratosphere also leads to reduced arcing distances. Vibrational loads are far less than for space missions, but quasi-static or shock loads may occur. The criticality of radiation increases with mission duration.Based on the environmental conditions, we present the qualification procedures for ESBO, which are based on the European Cooperation for Space Standardization (ECSS) standards for space systems. Overtesting against too high requirements leads to overengineering, driving mission cost and mitigating the advantages of balloons over space missions. Therefore, we modified the ECSS standards to fit typical scientific ballooning missions over several days at altitudes up to 40 km. Furthermore, we analyzed design rules for space systems with regard to their relevance for scientific ballooning, including material and component selection. We present the experience from the hardware qualification process for the ESBO prototype STUDIO (Stratospheric UV Demonstrator of an Imaging Observatory). Even though boundary conditions are different for each individual mission, we aimed for a broader approach: We investigated more general requirements for scientific ballooning missions to support future flights.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号