首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1043篇
  免费   63篇
  国内免费   14篇
航空   106篇
航天技术   885篇
综合类   4篇
航天   125篇
  2024年   1篇
  2023年   30篇
  2022年   9篇
  2021年   57篇
  2020年   31篇
  2019年   33篇
  2018年   37篇
  2017年   8篇
  2016年   9篇
  2015年   12篇
  2014年   75篇
  2013年   60篇
  2012年   56篇
  2011年   79篇
  2010年   66篇
  2009年   88篇
  2008年   89篇
  2007年   47篇
  2006年   22篇
  2005年   70篇
  2004年   25篇
  2003年   10篇
  2002年   16篇
  2001年   18篇
  2000年   19篇
  1999年   12篇
  1998年   23篇
  1997年   22篇
  1996年   9篇
  1995年   12篇
  1994年   28篇
  1993年   9篇
  1992年   15篇
  1991年   10篇
  1990年   9篇
  1989年   3篇
  1987年   1篇
排序方式: 共有1120条查询结果,搜索用时 843 毫秒
681.
Like all applications in trajectory design, the design of solar sail trajectories requires a transition from analytical models to numerically generated realizations of an orbit. In astrodynamics, three numerical strategies are often employed. Differential correctors (also known as shooting methods) are perhaps the most common techniques. Finite-difference methods and collocation schemes are also employed and are successful in generating trajectories with pseudo-continuous control histories. These three numerical techniques are employed here to generate periodic trajectories displaced below the Moon in a circular restricted three-body system. All these approaches reveal trajectory options within the design space for solar sail applications.  相似文献   
682.
Release of stored magnetic energy via particle acceleration is a characteristic feature of astrophysical plasmas. Magnetic reconnection is one of the mechanisms for releasing energy from magnetized plasmas. Collisionless magnetic reconnection could provide both the energy release mechanism and the particle accelerator in space plasmas. Here we studied particle acceleration when fluctuating (in-time) electric fields are superposed on an static X-type magnetic field in collisionless hot solar plasma. This system is chosen to mimic the reconnective dissipation of a linear MHD disturbance. Our results are compared to particle acceleration from constant electric field superposed on an X-type magnetic field. The constant electric field configuration represents the effects of steady state magnetic reconnection. Time evolution of ion and electron distributions are obtained by numerically integrating particle trajectories. The frequencies of the electric field represent a turbulent range of waves. Depending on the frequency and amplitude of the electric field, electrons and ions are accelerated to different degrees and have energy distributions of bimodal form consisting of a lower energy part and a high energy tail. For frequencies (ω in dimensioless units) in the range 0.5 ? ω ? 1.0 a substantial fraction (20%–30%) of the proton distribution is accelerated to gamma-ray producing energies. For frequencies in the range 1 ? ω ? 100.0 the bulk of the electron distribution is accelerated to hard X-ray producing energies. The acceleration mechanism is important for solar flares and solar noise storms but it could be applicable to all collisionless astrophysical plasmas.  相似文献   
683.
Some modifications of solar sail radiation pressure forces on a plate and on a sphere for use in the numerical simulation of ‘local-optimal’ (or ‘instantaneously optimal’) trajectories of a spacecraft with a solar sail are suggested. The force model development is chronologically reviewed, including its connection with solar sail surface reflective and thermal properties. The sail surface is considered as partly absorbing, partly reflective (specular and diffuse), partly transparent. Thermal balance is specified because the spacecraft moves from circular Earth orbit to near-Sun regions and thermal limitations on the sail film are taken into account. A spherical sail-balloon can be used in near-Sun regions for scientific research beginning with the solar-synchronous orbit and moving outward from the Sun. The Sun is considered not only as a point-like source of radiation but also as an extended source of radiation which is assumed to be consequently as a point-like source of radiation, a uniformly bright flat solar disc and uniformly bright solar sphere.  相似文献   
684.
We propose a dual-rendezvous mission, targeting near-Earth asteroids, including sample-return. The mission, Asteroid Sampling Mission (ASM), consists of two parts: (i) flyby and remote sensing of a Q-type asteroid, and (ii) sampling of a V-type asteroid. The targeted undifferentiated Q-type are found mainly in the near-Earth space, and to this date have not been the target of a space mission. We have chosen, for our sampling target, an asteroid from the basaltic class (V-type), as asteroids in this class exhibit spectral signatures that resemble those of the well-studied Howardite–Eucrite–Diogenite (HED) meteorite suite. With this mission, we expect to answer specific questions about the links between differentiated meteorites and asteroids, as well as gain further insight into the broader issues of early Solar System (SS) evolution and the formation of terrestrial planets. To achieve the mission, we designed a spacecraft with a dry mass of less than 3 tonnes that uses electric propulsion with a solar-electric power supply of 15 kW at 1 Astronomical Unit (AU). The mission includes a series of remote sensing instruments, envisages landing of the whole spacecraft on the sampling target, and employs an innovative sampling mechanism. Launch is foreseen to occur in 2018, as the designed timetable, and the mission would last about 10 years, bringing back a 150 g subsurface sample within a small re-entry capsule. This paper is a work presented at the 2008 Summer School Alpbach,“Sample return from the Moon, asteroids and comets” organized by the Aeronautics and Space Agency of the Austrian Research Promotion Agency. It is co-sponsored by ESA and the national space authorities of its Member and Co-operating States, with the support of the International Space Science Institute and Austrospace.  相似文献   
685.
This paper introduces a new attitude control system for a solar sail, which leverages solar radiation pressure. This novel system achieves completely fuel-free and oscillation-free attitude control of a flexible spinning solar sail. This system consists of thin-film-type devices that electrically control their optical parameters such as reflectivity to generate an imbalance in the solar radiation pressure applied to the edge of the sail. By using these devices, minute and continuous control torque can be applied to the sail to realize very stable and fuel-free attitude control of the large and flexible membrane. The control system was implemented as an optional attitude control system for small solar power sail demonstrator named IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). In-orbit attitude control experiments were conducted, and the performance of the controller was successfully verified in comparison with the ground-based analytical performance estimation.  相似文献   
686.
王杰  聂云清  吴军  刘望  袁福  邹杰 《宇航学报》2022,43(6):732-742
针对冷热交变环境导致太阳帆内部应力剧烈变化的问题,基于形状记忆合金(SMA)弹簧提出了太阳帆的张拉方案和薄膜应力保持恒定的方法,该方法利用形状记忆合金在高低温下的刚度非线性特性,有效补偿薄膜和支撑杆之间的间隙变化,以使薄膜内部应力基本保持恒定。针对六边形构型太阳帆开展了数值仿真,首先建立了太阳帆的热分析模型和力学分析模型,获取了高低温工况下的温度场。然后通过热致变形分析得到薄膜与支撑杆在高低温工况下的间隙变化,据此确定形状记忆合金弹簧的参数。最后对太阳帆在高低温工况下的薄膜内部应力进行了验证。  相似文献   
687.
Water scarcity in hot deserts, which cover about one-fifth of the Earth’s land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for photosynthesis and recent advances in photovoltaic engineering can be used as a basis for building sustainable settlements producing food, water, and energy in hot deserts.  相似文献   
688.
In this paper, we analyze the footpoint motion of two large solar flares using observations made by the Transition Region and Coronal Explorer (TRACE) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The two flares are the M5.7 flare of March 14, 2002 and the X10 flare of October 29, 2003. They are both classical two-ribbon flares as observed in TRACE 1600 or 171 Å images and have long-duration conjugate hard X-ray (HXR) footpoint emission. We use the ‘center-of-mass’ method to locate the centroids of the UV/EUV flare ribbons. The results are: (1) The conjugate UV/EUV ribbons and HXR footpoints of the two flares show a converging (inward) motion during the impulsive phase. For the two flares, the converging motion lasts about 3 and 10 min, respectively. The usual separation (outward) motion for the flare ribbons and footpoints take place only after the converging motion. (2) During the inward and the outward motion, the conjugate ribbons and footpoints of the two events exhibit a strong unshear motion. In obtaining above results, TRACE UV/EUV and RHESSI HXR data show an overall agreement. The two events demonstrate that the magnetic reconnection for the flares occurs in highly sheared magnetic field. Furthermore, the results support the magnetic model constructed by Ji et al. [Ji, H., Huang, G., Wang, H. Astrophys. J. 660, 893–900, 2007], who proposed that the contracting motion of flaring loops is the signature of the relaxation of sheared magnetic fields.  相似文献   
689.
The use of in-situ resources plays an important role on future extraterrestrial human activities for the facility repair and habitat construction, especially in sustainable space exploration of Moon and Mars. A method of the metal welded with extraterrestrial regolith simulant using solar processing under ambient conditions is presented. Metal parts are made of Q235B ferroalloy and TA2 titanium alloy into standard tensile members according to the ASTM code. They are disconnected from the middle in advance, and then welded together with lunar and Martian regolith simulant under ambient conditions, respectively. The entire welding process and precautions are detailed. Additionally, the mechanical behavior of weldments is characterized regarding their tensile strength. Furthermore, the fusion zone of weldments is studied by Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) measurements. The results show that it is possible to weld metal parts together with extraterrestrial regolith simulant by the solar concentrator. The average ultimate tensile strength of ferroalloy specimens welded with lunar and Martian regolith simulant is 2.94 MPa and 1.66 MPa; The average ultimate tensile strength of titanium alloy specimens welded with lunar and Martian regolith simulant is 4.95 MPa and 2.59 MPa. Moreover, the failure mode of all weldments was brittle failure. The welding joints strength derives from the phases that the regolith as the solder fusing into ferroalloys in a homogeneous way and titanium alloys in an inhomogeneous way. The presented method may provide a new thought for astronaut assistance associating with repairing and fabricating in subsequent Moon and Mars missions.  相似文献   
690.
This is an overview of progresses in heliospheric physics made in China in the period of June, 2000 to May, 2002. The report is focused on theoretical studies,modelling and observational analysis of interplanetary physical phenomena, and consists of five sections: the acceleration and heating of the solar wind, corona structures, coronal mass ejections, magnetic reconnection phenomena, and in terplanetary transient phenomena. The main achievements made recently by Chinese scientists in related areas are simply listed in corresponding sections without any priority, only certain editorial consideration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号