首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1073篇
  免费   62篇
  国内免费   15篇
航空   105篇
航天技术   915篇
综合类   4篇
航天   126篇
  2024年   1篇
  2023年   30篇
  2022年   11篇
  2021年   60篇
  2020年   31篇
  2019年   34篇
  2018年   40篇
  2017年   7篇
  2016年   7篇
  2015年   12篇
  2014年   78篇
  2013年   64篇
  2012年   58篇
  2011年   82篇
  2010年   67篇
  2009年   89篇
  2008年   88篇
  2007年   48篇
  2006年   22篇
  2005年   71篇
  2004年   25篇
  2003年   10篇
  2002年   16篇
  2001年   18篇
  2000年   19篇
  1999年   13篇
  1998年   23篇
  1997年   22篇
  1996年   9篇
  1995年   16篇
  1994年   28篇
  1993年   10篇
  1992年   16篇
  1991年   10篇
  1990年   10篇
  1989年   3篇
  1987年   2篇
排序方式: 共有1150条查询结果,搜索用时 62 毫秒
921.
Based on ground-level data and on satellite data we determine in this work the observational spectrum of both, the Ground Level Enhancement of May 17, (2012) the so-called GLE71 and the Ground Level Enhancement of September 10, 2017 (GLE 72). We describe a simplified method to obtain the experimental spectrum at ground level. Data of the GLE71 and GLE72 indicate the presence of two different populations, each one with a different energy spectrum. On the other hand, we explore the kind of phenomena that take place at the source in these two particular events. In contrast with other methods based on the temporal synchronization between electromagnetic emissions of flares and coronal mass ejections (CME), here we develop an alternative option based on the study of the accelerated particles, by adjusting our theoretical spectra to the observational spectra. The main results of this work are the derivation of the source and acceleration parameters involved in the generation process. These results lead us to construct possible scenarios of particle generation in the source for each one of the two studied GLEs.  相似文献   
922.
Passive attitude stability criteria of a solar sail whose membrane surface is axisymmetric are studied in this paper under a general SRP model. This paper proves that arbitrary attitude equilibrium position can be designed through adjusting the deviation between the pressure center and the mass center of the sail. The linearized method is applied to inspect analytically the stability of the equilibrium point from two different points of views. The results show that the attitude stability depends on the membrane surface shape and area. The results of simulation with full dynamic equations confirm that the two stability criteria are effective in judging the attitude stability for axisymmetric solar sail. Several possible applications of the study are also mentioned.  相似文献   
923.
This paper introduces an investigation of shocklike soliton or small amplitude Double Layers (DLs) in a collisionless plasma, consisting of positive and negative ions, nonthermal electrons, as well as solar wind streaming protons and electrons. Gardner equation is derived and its shocklike soliton solution is obtained. The model is employed to recognize a possible nonlinear wave at Venus ionosphere. The results indicate that the number densities and velocities of the streaming particles play crucial role to determine the polarity and characteristic features (amplitude and width) of the shocklike soliton waves. An electron streaming speed modifies a negative shocklike wave profile, while an ion streaming speed modulates a positive shocklike wave characteristic.  相似文献   
924.
We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon’s umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180?min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.  相似文献   
925.
A total solar eclipse occurred on 21 August 2017, with the path of totality starting over the North Pacific Ocean, crossing North-America and ending over the Mid-Atlantic Ocean slightly North of the equator. As a result, a partial solar eclipse was observed as far away as the Western Europe. The ionospheric observatory in Dourbes, Belgium, was right on the edge of the partial eclipse and was exposed for a very short period of only few minutes just before the local sunset. High-resolution ionospheric measurements were carried out at the observatory with collocated digital ionosonde and GNSS receivers. The data analysis revealed a clear wave-like pattern in the ionosphere that can be seen arriving before the local onset of the eclipse. The paper details the analysis and provides a possible explanation of the observed phenomenon.  相似文献   
926.
During Sun-Earth eclipse seasons, GPS-IIA satellites perform noon, shadow and post-shadow yaw maneuvers. If the yaw maneuvers are not properly taken into account in the orbit determination process, two problems appear: (1) the observations residuals increase since the modeled position of the satellite’s navigation antenna differs from the true position, and (2) the non-conservative forces like solar radiation pressure or Earth radiation pressure are mismodeled due to the wrong orientation of the satellite’s surfaces in space.  相似文献   
927.
Herein, we report on the ionospheric responses to a total solar eclipse that occurred on 21 August 2017 over the US region. Ground-based GPS total electron content (TEC) data along with ground-based measurements (Millstone Hill Observatory (MHO) and digital ionosondes) and space-based measurements (COSMIC radio occultation (RO) technique) allowed us to identify eclipse-associated ionospheric responses. TEC data at ~20°, ~30°, and ~40°N latitudes from the west to east longitudes show not only considerable depression but also wave-like characteristics in TEC both in the path of totality and away from it, exclusively on the day of eclipse. Interestingly, the observed depressions are associated with lesser (higher) magnitudes at stations over which the solar obscuration percentage was meager (significant), a clear indication of bow-wave-like features. The MHO observes a 30% reduction in F2-layer electron densities between 180 and 220 km on eclipse day. Ionosonde-scaled parameters over Boulder (40.4°N, 100°E) and Austin (30.4°N, 94.4°E) show a significant decrease in critical frequencies while an altitude elevation is seen in the virtual heights of the F-layer only during the eclipse day and that decreases are associated with wave-like signatures, which could be attributed to eclipse-generated waves. The estimated vertical electron density profile from the COSMIC RO-based technique shows a maximum depletion of 40%. Relatively intense and moderate depths of TEC depression, considerable reductions in the F2-layer electron densities measured by the MHO and COSMIC RO-measured densities at the F2-layer peak, and elevations in virtual heights and reduction in the critical frequencies measured by ionosondes during the eclipse day could be due to the eclipse-induced dynamical effects such as gravity waves (GWs) and their associated electro-dynamical effects (modification of ionospheric electric fields due to GWs).  相似文献   
928.
We investigate the acceleration of charged particles in a time-dependent chaotic magnetic field in this work. In earlier works, it has been demonstrated that in an asymmetric wire-loop current systems (WLCSs), the magnetic field is of chaotic in nature. Furthermore, observations also showed that there exist time-varying current loops and current filaments in solar corona. It is therefore natural to conceive that the magnetic field on the solar surface is chaotic and time-dependent. Here, we develop a numerical model to study the acceleration process of charged particles in a time-varying chaotic magnetic field that is generated by an ensemble of 8 WLCSs. We found that the motion of energetic particles in the system is of diffusive in nature and a power law spectrum can quickly develop. The mechanism examined here may serve as an efficient pre-acceleration mechanism that generates the so-called seed particles for diffusive shock acceleration at a coronal mass ejection (CME) driven shock in large solar energetic particle (SEP) events.  相似文献   
929.
The Moon does not have significant atmosphere and magnetic field. So it was considered like a passive absorber of incoming plasma. The latest observation revealed that the significant deflected proton fluxes exist over magnetic anomalies at lunar surface. Such deflection implies that the magnetic anomalies may act as magnetosphere-like obstacles (mini-magnetospheres), modifying the upstream plasma.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号