首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1685篇
  免费   193篇
  国内免费   205篇
航空   566篇
航天技术   753篇
综合类   79篇
航天   685篇
  2024年   10篇
  2023年   37篇
  2022年   45篇
  2021年   70篇
  2020年   58篇
  2019年   47篇
  2018年   64篇
  2017年   33篇
  2016年   50篇
  2015年   49篇
  2014年   96篇
  2013年   96篇
  2012年   89篇
  2011年   152篇
  2010年   118篇
  2009年   93篇
  2008年   75篇
  2007年   106篇
  2006年   101篇
  2005年   82篇
  2004年   64篇
  2003年   59篇
  2002年   45篇
  2001年   50篇
  2000年   46篇
  1999年   54篇
  1998年   38篇
  1997年   38篇
  1996年   22篇
  1995年   24篇
  1994年   34篇
  1993年   27篇
  1992年   24篇
  1991年   27篇
  1990年   19篇
  1989年   14篇
  1988年   16篇
  1987年   11篇
排序方式: 共有2083条查询结果,搜索用时 306 毫秒
921.
4D Lattice Flower Constellations is a new constellation design framework, based on the previous 2D and 3D Lattice theories of Flower Constellations, that focus on the generation of constellations whose satellites can have different semi-major axis and still present a constellation structure that is maintained during the dynamic of the system. This situation can arise when dealing with satellites with very different instruments, or when it is of interest to coordinate two different constellations. In that sense, 4D Lattice Flower Constellations constitutes the most general representation of the Flower Constellation formulation. In addition, the effects of the J2 perturbation are taken into account in order to generate distributions that maintain their initial design configuration under this perturbation for longer periods of time with a low fuel budget. Finally, examples of application are presented, showing the possibilities in satellite constellation design of this new approach.  相似文献   
922.
In the framework of satellite-only gravity field modeling, satellite laser ranging (SLR) data is typically exploited to recover long-wavelength features. This contribution provides a detailed discussion of the SLR component of GOCO02S, the latest release of combined models within the GOCO series. Over a period of five years (January 2006 to December 2010), observations to LAGEOS-1, LAGEOS-2, Ajisai, Stella, and Starlette were analyzed. We conducted a series of closed-loop simulations and found that estimating monthly sets of spherical harmonic coefficients beyond degree five leads to exceedingly ill-posed normal equation systems. Therefore, we adopted degree five as the spectral resolution for real data analysis. We compared our monthly coefficient estimates of degree two with SLR and Gravity Recovery and Climate Experiment (GRACE) time series provided by the Center for Space Research (CSR) at Austin, Texas. Significant deviations in C20 were noted between SLR and GRACE; the agreement is better for the non-zonal coefficients. Fitting sinusoids together with a linear trend to our C20 time series yielded a rate of (−1.75 ± 0.6) × 10−11/yr; this drift is equivalent to a geoid change from pole to equator of 0.35 ± 0.12 mm/yr or an apparent Greenland mass loss of 178.5 ± 61.2 km3/yr. The mean of all monthly solutions, averaged over the five-year period, served as input for the satellite-only model GOCO02S. The contribution of SLR to the combined gravity field model is highest for C20, and hence is essential for the determination of the Earth’s oblateness.  相似文献   
923.
《中国航空学报》2020,33(12):3395-3404
In this study, a Dual Smoothing Ionospheric Gradient Monitor Algorithm (DSIGMA) was developed for Code-Carrier Divergence (CCD) faults of dual-frequency Ground-Based Augmentation Systems (GBAS) based on the BeiDou Navigation Satellite System (BDS). Divergence-Free (DF) combinations of the signals were used to form test statistics for a dual-frequency DSIGMA. First, the single-frequency DSIGMA was reviewed, which supports the GBAS approach service type D (GAST-D) for protection against the effect of large ionospheric gradients. The single-frequency DSIGMA was used to create a novel input scheme for the dual-frequency DSIGMA by introducing DF combinations. The steady states of the test statistics were also analysed. The monitors were characterized using BDS measurement data, whereby standard deviations of 0.0432 and 0.0639 m for the proposed two test statistics were used to calculate the monitor threshold. An extensive simulation was designed to assess the monitor performance by comparing the Probability of Missed Detection (PMD) according to the differential error with the range domain PMD limits under different fault modes. The results showed that the proposed algorithm has a higher integrity performance than the single-frequency monitor. The minimum detectable divergence with the same missed probability is less than 50% that of GAST-D.  相似文献   
924.
王伟林  宋旭民  王磊 《宇航学报》2020,41(2):215-223
针对空间翻滚目标等一类相对运动复杂的接近控制问题,首先重点研究了基于微分几何理论的相对运动建模,建立视线旋转坐标系下的三维相对运动方程;然后将三维相对运动解耦为视线瞬时旋转平面内的相对运动和该平面的转动,建立了统一的控制器设计框架,形式统一简洁、物理意义明确,消除传统制导与控制策略中俯仰、偏航通道的耦合因素影响;最后通过六自由度仿真算例证明,相对运动模型物理意义明晰、鲁棒性强、控制精度高、工程实现容易。  相似文献   
925.
The Rodalquilar epithermal quartz-alunite gold deposits that occur within the Rodalquilar caldera complex in southeast Spain, are associated with a pronounced hydrothermal alteration of the country rocks. The hydrothermal alteration zones that are exposed on the surface consist of the vuggy silica zone, the advanced argillic alteration zone, the intermediate argillic alteration zone, the propylitic alteration zone, and a second stage supergene acid sulfate alteration. High spatial resolution multispectral imagery recorded by the WorldView-3 satellite was used in this study to map the spatial distribution of the main alteration minerals in the Rodalquilar caldera complex. Thermal infrared (TIR) data of the ASTER satellite were used to detect the quartz-rich zones. The analysis of the Rodalquilar WorldView-3 data was based on the Adaptive Coherence Estimator (ACE), a partial unmixing algorithm. The ACE processing accurately mapped the spatial distribution of alunite, kaolinite, illite and goethite. Alunite is abundant in the vuggy silica and advanced argillic alteration zones, and in the second stage supergene acid sulfate alteration. Kaolinite is predominant in the intermediate argillic alteration zone. Illite is abundant in the outer parts of the intermediate argillic alteration zone. Goethite image maps gossans that mainly occur in the vuggy silica and advanced argillic alteration zones, and in the areas characterized by the second stage supergene acid sulfate alteration. The detection of quartz-rich zones from the ASTER TIR data complemented the WorldView-3 mapping results. The study shows the efficiency of high spatial resolution multispectral remote sensing imagery recorded by the WorldView-3 satellite for district-level mineral exploration studies.  相似文献   
926.
Since China’s BeiDou satellite navigation system (BDS) began to provide regional navigation service for Asia-Pacific region after 2012, more new generation BDS satellites have been launched to further expand BDS’s coverage to be global. In this contribution, precise positioning models based on BDS and the corresponding mathematical algorithms are presented in detail. Then, an evaluation on BDS’s real-time dynamic positioning and navigation performance is presented in Precise Point Positioning (PPP), Real-time Kinematic (RTK), Inertial Navigation System (INS) tightly aided PPP and RTK modes by processing a set of land-borne vehicle experiment data. Results indicate that BDS positioning Root Mean Square (RMS) in north, east, and vertical components are 2.0, 2.7, and 7.6?cm in RTK mode and 7.8, 14.7, and 24.8?cm in PPP mode, which are close to GPS positioning accuracy. Meanwhile, with the help of INS, about 38.8%, 67.5%, and 66.5% improvements can be obtained by using PPP/INS tight-integration mode. Such enhancements in RTK/INS tight-integration mode are 14.1%, 34.0%, and 41.9%. Moreover, the accuracy of velocimetry and attitude determination can be improved to be better than 1?cm/s and 0.1°, respectively. Besides, the continuity and reliability of BDS in both PPP and RTK modes can also be ameliorated significantly by INS during satellite signal missing periods.  相似文献   
927.
With the improvement in the service accuracy and expansion of the application scope of satellite navigation systems, users now have high demands for system integrity that are directly related to navigation safety. As a crucial index to measure the reliability of satellite navigation systems, integrity is the ability of the system to send an alarm when an abnormity occurs. The new-generation Beidou Navigation Satellite System (BDS-3) prioritized the upgrading of system integrity as an important objective in system construction. Because the system provides both basic navigation and satellite-based augmentation system (SBAS) services by the operational control system, BDS-3 adopts an integrated integrity monitoring and processing strategy that applies satellite autonomous integrity monitoring and ground-based integrity monitoring for both the basic navigation service and SBAS navigation service. BDS-3 also uses an improved and refined integrity parameter system to provide slow, fast and real-time integrity parameters for basic navigation, and provide SBAS-provided integrity information messages in accordance with Radio Technical Commission for Aeronautics (RTCA) specification and dual frequency, multi-constellation (DFMC) specification to support the SBAS signal frequency, single constellation operation and DFMC operation respectively. The performance of BDS-3 system integrity monitoring is preliminarily verified during on-orbit testing in different states, including normal operation, satellite clock failure and satellite ephemeris failure. The results show that satellite autonomous integrity monitoring, ground-based integrity monitoring and satellite-based augmentation all correctly work within the system. Satellite autonomous integrity monitoring can detect satellite clock failure but not satellite orbit failure. However, ground-based integrity monitoring can detect both. Moreover, the satellite-based augmentation integrity system monitors the differential range error after satellite ephemeris and clock error corrections based on user requirements. Compared to the near minute-level time-to-alert capability of ground-based integrity monitoring, satellite autonomous integrity monitoring reduces the system alert time to less than 4 s. With a combined satellite-ground monitoring strategy and the implementation of different monitoring technologies, the BDS-3 integrity of service has been considerably improved.  相似文献   
928.
A method is proposed for reconstructing the electron density profiles N(h) of the IRI model from ionograms of topside satellite sounding of the ionosphere. An ionograms feature is the presence of traces of signal reflection from the Earth's surface. The profile reconstruction is carried out in two stages. At the first stage, the N(h) –profile is calculated from the lower boundary of the ionosphere to the satellite height (total profile) by the method presented in this paper using the ionogram. In this case, the monotonic profile of the topside ionosphere is calculated by the classical method. The profile of the inner ionosphere is represented by analytical functions, the parameters of which are calculated by optimization methods using traces of signal reflection, both from the topside ionosphere and from the Earth. At the second stage, the profile calculated from the ionogram is used to obtain the key parameters: the height of the maximum hmF2 of the F2 layer, the critical frequency foF2, the values of B0 and B1, which determine the profile shape in the F region in the IRI model. The input of key parameters, time of observation, and coordinates of sounding into the IRI model allows obtaining the IRI-profile corrected to real experimental conditions. The results of using the data of the ISIS-2 satellite show that the profiles calculated from the ionograms and the IRI profiles corrected from them are close to each other in the inner ionosphere and can differ significantly in the topside ionosphere. This indicates the possibility of obtaining a profile in the inner ionosphere close to the real distribution, which can significantly expand the information database useful for the IRTAM (IRI Realmax Assimilative Modeling) model. The calculated profiles can be used independently for local ionospheric research.  相似文献   
929.
Satellite Laser Ranging (SLR) is a powerful technique able to measure spin rate and spin axis orientation of the fully passive, geodetic satellites. This work presents results of the spin determination of LARES – a new satellite for testing General Relativity. 529 SLR passes measured between February 17 and June 9, 2012, were spectrally analyzed. Our results indicate that the initial spin frequency of LARES is f0 = 86.906 mHz (RMS = 0.539 mHz). A new method for spin axis determination, developed for this analysis, gives orientation of the axis at RA = 12h22m48s (RMS = 49m), Dec = −70.4° (RMS = 5.2°) (J2000.0 celestial reference frame), and the clockwise (CW) spin direction. The half-life period of the satellite’s spin is 214.924 days and indicates fast slowing down of the spacecraft.  相似文献   
930.
Accurate knowledge of the rotational dynamics of a large space debris is crucial for space situational awareness (SSA), whether it be for accurate orbital predictions needed for satellite conjunction analyses or for the success of an eventual active debris removal mission charged with stabilization, capture and removal of debris from orbit. In this light, the attitude dynamics of an inoperative satellite of great interest to the space debris community, the joint French and American spacecraft TOPEX/Poseidon, is explored. A comparison of simulation results with observations obtained from high-frequency satellite range measurements is made, showing that the spacecraft is currently spinning about its minor principal axis in a stable manner. Predictions of the evolution of its attitude motion to 2030 are presented, emphasizing the uncertainty on those estimates due to internal energy dissipation, which could cause a change of its spin state in the future. The effect of solar radiation pressure and the eddy-current torque are investigated in detail, and insights into some of the satellite’s missing properties are provided. These results are obtained using a novel, open-source, coupled orbit-attitude propagation software, the Debris SPin/Orbit Simulation Environment (D-SPOSE), whose primary goal is the study of the long-term evolution of the attitude dynamics of large space debris.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号