首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   145篇
  国内免费   178篇
航空   387篇
航天技术   381篇
综合类   45篇
航天   307篇
  2024年   8篇
  2023年   15篇
  2022年   37篇
  2021年   43篇
  2020年   51篇
  2019年   33篇
  2018年   40篇
  2017年   39篇
  2016年   52篇
  2015年   58篇
  2014年   49篇
  2013年   54篇
  2012年   53篇
  2011年   87篇
  2010年   68篇
  2009年   51篇
  2008年   54篇
  2007年   63篇
  2006年   41篇
  2005年   46篇
  2004年   32篇
  2003年   29篇
  2002年   16篇
  2001年   20篇
  2000年   19篇
  1999年   17篇
  1998年   9篇
  1997年   8篇
  1995年   8篇
  1994年   5篇
  1993年   2篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1120条查询结果,搜索用时 15 毫秒
991.
通过结合目标跟踪与相对定位,在对多帧检测目标进行关联与分析的同时,可以获取其三维信息。但当目标外观特征变换较大时,传统目标跟踪算法较易发生漏匹配或身份变换,而仅依靠对齐点云的相对定位算法较易出现定位失效的情况。针对以上问题,提出了一种基于改进DeepSORT的目标跟踪与定位方法在原始DeepSORT算法中加入基于位置约束的匹配,解决了因外观改变导致的漏匹配问题;在获取跟踪信息的基础上,设计了基于目标运动模型的相对定位方法,解决了图像中目标较小时相对定位不连续且定位精度较低的问题。试验结果表明,与传统DeepSORT算法相比,多目标跟踪准确度提高了5.9%;与仅依靠对齐点云的相对定位算法相比,定位精度提高了62.4%。  相似文献   
992.
分析了传统的通过方向余弦矩阵、四元数形式的飞行器转动微分方程数值积分结果确定姿态角方法的不足,介绍了基于改进的牛顿法确定飞行器姿态角的方法.基于多次测量均值效应原理,介绍多使用上述两种方法中的元素提高飞行器姿态角计算精度的算法及仿真结果.  相似文献   
993.
Asymmetrical spin stabilized satellite dynamics in the vicinity of the required motion is considered. The principal axis of the maximum moment of inertia slightly deviates from its assumed direction in the satellite reference frame. This is formalized in the cross products of inertia. This inertial uncertainty results in a wobble, that is undesired angular velocity components perpendicular to the rotation axis, and oscillations of this axis near the required direction. The torque-free motion is investigated first. Expressions that explicitly relate satellite inertia parameters to wobble are provided. Wobble evolution under the action of magnetic damping control is analyzed next. Its amplitude approximate exponential decay behavior and residual unavoidable wobble level are derived. These expressions are compared with numerical simulation results of nonlinear equations of motion including various disturbance sources.  相似文献   
994.
This paper presents fuel optimal and balancing methodologies for reconfiguring multiple spacecraft in formation subject to a Newtonian gravity field. For a kind of continuous-thrust propulsion system, a fuel-optimal control problem is formulated to minimize the integral squared control subject to the linearized Hill or Clohessy–Wiltshire dynamics of relative motion with respect to a circular reference orbit. Palmer’s analytical solution for general reconfiguration is adapted to maneuvers between projected circular orbits, resulting in the optimal fuel consumption index as a function of configuration parameters such as orbit radius, phase angle, and transfer time. Parametric analyses reveal unique characteristics of individual fuel optimality and gross fuel consumption: for an arbitrary selection of initial/terminal orbit radii, (i) there exist special transfer times such that individual fuel consumption is optimally uniform for all phase angles, and (ii) the total fuel expenditure for a group of three or more spacecraft is invariant for the relatively same configuration with respect to the departure phase. These results serve to effectively design fuel balancing strategies for formation reconfiguration of multiple spacecraft.  相似文献   
995.
The J2 problem is an important problem in celestial mechanics, orbital dynamics and orbital design of spacecraft, as non-spherical mass distribution of the celestial body is taken into account. In this paper, the J2 problem is generalized to the motion of a rigid body in a J2 gravitational field. The relative equilibria are studied by using geometric mechanics. A Poisson reduction process is carried out by means of the symmetry. Non-canonical Hamiltonian structure and equations of motion of the reduced system are obtained. The basic geometrical properties of the relative equilibria are given through some analyses on the equilibrium conditions. Then we restrict to the zeroth and second-order approximations of the gravitational potential. Under these approximations, the existence and detailed properties of the relative equilibria are investigated. The orbit–rotation coupling of the rigid body is discussed. It is found that under the second-order approximation, there exists a classical type of relative equilibria except when the rigid body is near the surface of the central body and the central body is very elongated. Another non-classical type of relative equilibria can exist when the central body is elongated enough and has a low average density. The non-classical type of relative equilibria in our paper is distinct from the non-Lagrangian relative equilibria in the spherically-simplified Full Two Body Problem, which cannot exist under the second-order approximation. Our results also extend the previous results on the classical type of relative equilibria in the spherically-simplified Full Two Body Problem by taking into account the oblateness of the primary body. The results on relative equilibria are useful for studies on the motion of many natural satellites, whose motion are close to the relative equilibria.  相似文献   
996.
Nowadays, nano- and micro-satellites, which are smaller than conventional large satellites, provide access to space to many satellite developers, and they are attracting interest as an application of space development because development is possible over shorter time period at a lower cost. In most of these nano- and micro-satellite missions, the satellites generally must meet strict attitude requirements for obtaining scientific data under strict constraints of power consumption, space, and weight. In many satellite missions, the jitter of a reaction wheel degrades the performance of the mission detectors and attitude sensors; therefore, jitter should be controlled or isolated to reduce its effect on sensor devices. In conventional standard-sized satellites, tip-tilt mirrors (TTMs) and isolators are used for controlling or isolating the vibrations from reaction wheels; however, it is difficult to use these devices for nano- and micro-satellite missions under the strict power, space, and mass constraints. In this research, the jitter of reaction wheels is reduced by using accurate sensors, small reaction wheels, and slow rotation frequency reaction wheel instead of TTMs and isolators. The objective of a reaction wheel in many satellite missions is the management of the satellite’s angular momentum, which increases because of attitude disturbances. If the magnitude of the disturbance is reduced in orbit or on the ground, the magnitude of the angular momentum that the reaction wheels gain from attitude disturbances in orbit becomes smaller; therefore, satellites can stabilize their attitude using only smaller reaction wheels or slow rotation speed, which cause relatively smaller vibration. In nano- and micro-satellite missions, the dominant attitude disturbance is a magnetic torque, which can be cancelled by using magnetic actuators. With the magnetic compensation, the satellite reduces the angular momentum that the reaction wheels gain, and therefore, satellites do not require large reaction wheels and higher rotation speed, which cause jitter. As a result, the satellite can reduce the effect of jitter without using conventional isolators and TTMs. Hence, the satellites can achieve precise attitude control under low power, space, and mass constraints using this proposed method. Through the example of an astronomical observation mission using nano- and micro-satellites, it is demonstrated that the jitter reduction using small reaction wheels is feasible in nano- and micro-satellites.  相似文献   
997.
This article presents an adaptive attitude tracking controller with external disturbances and unknown inertia parameters. The similar skew-symmetric structure is extended from the autonomous case to the non-autonomous case. The non-autonomous similar skew-symmetric is chosen as the desired structure of the closed loop system for attitude controller design. Based on this structure, a novel adaptive backstepping scheme is proposed to design the attitude controller by taking full advantage of the symmetry and the positive definiteness of the inertia matrix. The attitude tracking precision is enhanced by employing the linear parameterized form of the external disturbance torques. Simulation results demonstrate the effectiveness of the proposed attitude controller.  相似文献   
998.
需求分析是软件开发过程中的重要环节.在国内卫星姿轨控软件设计过程中,需求分析阶段描述和定义用户需求的工作多数仍采用传统方法,过于关注软件的设计过程,而忽略了软件需要实现的功能,常常引发需求分析结果与任务方期望不一致的情况,影响开发进度.针对姿轨控软件的特点,在软件需求分析工作中引入敏捷开发所采用的"用户故事("User Story)方法,可以高效清晰地描述和定义用户所需要的软件功能,提高任务方在需求分析阶段的参与程度,显著提高需求分析的准确性.  相似文献   
999.
针对当前常用的导航、定姿方法存在的不足,提出了一种采用单天线GPS、磁强计和加速度计的组合导航、定姿方法.以常见的匀加速模型作为系统方程,以GPS输出的位置和速度作为观测量,设计了卡尔曼滤波器,获得更精确的载体速度、位置和加速度信息.在获得加速度估值之后,根据地磁场和载体比力在载体坐标系和导航坐标系的投影关系构造姿态矩...  相似文献   
1000.
Momentum management of spacecraft aims to avoid the angular momentum accumulation of control momentum gyros through real-time attitude adjustment. An attitude control/momentum management controller based on state-dependent Riccati equation is developed for attitude-stabilized spacecraft. The governing equations of the system are formulated as three-axis coupled with full moment of inertia, which fully capture the nonlinearity of the system and are valid for systems with significant products of inertia or strong pitch to roll/yaw coupling. The state-dependent Riccati equation algorithm brings the nonlinear system to a linear structure having state dependent coefficients matrices and minimizing a quadratic-like performance index. The system equations are nondimensionalized, which avoid numerical problems at the same time make the weighting matrix more predictable. To guarantee closed-loop system stability, the state-dependent Riccati equation algorithm is also modified based on pole placement technique. The state-dependent Riccati equation is online calculated through the computational-efficient θ-D technique which reaches a tradeoff between control optimality and computation load. The dynamic characteristics of the system at torque equilibrium attitude are analyzed. Constraints on moment of inertia for successful momentum management are provided. Simulations demonstrate the excellent performance of the controller.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号