首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   766篇
  免费   133篇
  国内免费   79篇
航空   629篇
航天技术   117篇
综合类   72篇
航天   160篇
  2024年   2篇
  2023年   39篇
  2022年   30篇
  2021年   26篇
  2020年   41篇
  2019年   29篇
  2018年   16篇
  2017年   32篇
  2016年   34篇
  2015年   23篇
  2014年   37篇
  2013年   30篇
  2012年   48篇
  2011年   43篇
  2010年   39篇
  2009年   43篇
  2008年   38篇
  2007年   46篇
  2006年   50篇
  2005年   29篇
  2004年   25篇
  2003年   27篇
  2002年   18篇
  2001年   34篇
  2000年   38篇
  1999年   14篇
  1998年   20篇
  1997年   19篇
  1996年   11篇
  1995年   16篇
  1994年   17篇
  1993年   11篇
  1992年   18篇
  1991年   12篇
  1990年   6篇
  1989年   8篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有978条查询结果,搜索用时 163 毫秒
31.
An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results indicate: (1) a large region of low total pressure exists at the lower part of the inlet exit caused by the counter-rotating vortices in the S-shaped duct; (2) the performances of the inlet at Mach number 1.000 reach almost the highest, so the propulsion system could work efficiently in terms of aerodynamics; (3) the total pressure recovery increases slowly at first and then remains unvaried as the Mach number rises from 0.6 to 1.0, however, it does in an opposite manner in the conventional diverter-equipped S-shaped inlet; (4) the performances of the inlet are generally insensitive to angles of attack from -4° to 9.4° and yaw angles from 0° to 8° at Mach number 0.850, and angles of attack from -2° to 6° and yaw angles from 0° to 5° at Mach number 1.534.  相似文献   
32.
进气道复杂蒙皮零件制造是某型飞机的关键技术之一.通过计算拉形系数和极限拉形系数,分别对鼓包形蒙皮、侧凹形蒙皮、马鞍形蒙皮的工艺性进行了分析,采用试验方法确定了三段蒙皮零件的数控拉形工艺过程,并对深度马鞍形蒙皮拉形工艺方法进行了改进.建立了检验模具和成形模具的制造与协调方法,建立了蒙皮零件数字化制造流程.通过数字化技术的应用,提高了模具与零件的制造准确度,缩短了零件制造周期.  相似文献   
33.
含八氢基笼形倍半硅氧烷的双马来酰亚胺树脂   总被引:4,自引:0,他引:4  
利用硅氢加成反应和烯加成反应,以八氢基笼形倍半硅氧烷(T8H8)、二烯丙基双酚A(DABPA)和双马来酰亚胺(BMI)为单体合成了改性BMI树脂,采用FT-IR、DSC、TGA分别表征了树脂的结构、固化行为及热性能.研究结果表明,T8H8-DABPA-BMI固化树脂的玻璃化转变温度达到323℃,热分解温度(5%失重,T5d)为422、800℃热分解残重率为50.7%.  相似文献   
34.
菊花形混合器混合效率理论计算   总被引:4,自引:10,他引:4  
在菊花形混合器混合增强机理深入分析的基础上,采用环形流线流动模型、平板火焰扩散模型以及三维细长体近似法等,提出了涡扇发动机内外涵菊花形混合器在相同出口面积条件下,相对于环形混合器,其混合效率的解析解.对某涡扇发动机的多工况计算结果表明,菊花形混合器混合效率解析解的计算精度较高,可以用于菊花形混合器混合效率的快速计算.   相似文献   
35.
杨晶晶  单鹏 《航空动力学报》2009,24(8):1805-1812
介绍了某高负荷双级前掠风扇的设计方法和设计结果.为改善风扇性能, 采用了转子叶尖和静子叶根适度前掠的设计方法.在此设计基础上对前掠和后掠两个单级的三维数值解进行对比研究, 认为前掠、后掠所得风扇效率的差别很小, 转子通道在三维相对运动中不存在旋向相反的流动形态;前掠明显提高失速裕度的主要原因是转子通道激波曲面按其自身结构的需要而展向发展, 它的展向构形和流向平衡位置不完全随叶片前缘形状改变, 因此前掠增大了激波与前缘的相对距离.   相似文献   
36.
通过分析不锈钢薄蒙皮零件的结构及其成形工艺特点,拟定针对性成形工艺并进行相应工艺试验,研究了成形工艺对成形效果的影响,实现了该类薄蒙皮零件在纵向蒙皮拉形机上的拉形,解决了薄蒙皮成形质量问题,满足装配和表面质量要求。  相似文献   
37.
S形进气道流动控制数值模拟研究   总被引:2,自引:0,他引:2  
采用CFD技术,结合试飞数据,对某S形进气道进行了加涡流发生器的流动控制数值模拟研究.着重分析了三个不同位置加涡流发生器后,进气道内部二次流的发展;之后比较了不加涡流发生器及不同位置加涡流发生器时进气道出口总压恢复、畸变等情况.结果表明涡流发生器明显地影响着进气道内部二次流的发展变化,涡流发生器对进气道出口周向稳态总压畸变有较大程度改善,但是对于提高总压恢复效果不明显.  相似文献   
38.
谭胜  陈鑫  何立明  荣康  张强  朱晓彬  张一豪 《推进技术》2016,37(9):1786-1793
为研究导流块深度对抛物形凹面腔内径向入射激波聚焦过程的影响,对马赫数为1.41的径向入射激波在导流块深度分别为0,5,10,15mm的凹面腔内反射聚焦过程进行了实验研究。结合高速CCD拍摄到的凹面腔中气流流场纹影照片和动态压力传感器测得的聚焦过程中流场的压力变化,对径向入射激波在凹面腔内的反射聚焦过程进行了描述。通过比较不同导流块深度下激波反射聚焦过程,发现随着导流块深度的加深,前导激波聚焦和反射激波聚焦的时间差会减小,使激波聚焦的强度增大,当导流块深度从0mm增加到15mm时,激波聚焦所致的峰值压力从0.39MPa增加到0.51MPa。但是,随着导流块深度的加深,压力增益下降,并使排气过程的难度加大,因此导流块深度为10mm左右时能取得较好的聚焦效果。  相似文献   
39.
利用基于改进的延迟分离涡模拟(IDDES)方法,对亚声速和超声速来流条件下某S形模型进气道进行了非定常计算,研究了发动机喘振所产生的瞬时高压波形对锤击波传播规律的影响.结果表明:锤击波产生后沿进气道迅速向前传播,运动过程中锤击波的运动速度基本保持不变,但强度不断增强.同时受气流离心力的影响,S形进气道弯曲段半径较大一侧壁面受到的锤击波气动荷载值更大.发动机喘振所产生的瞬时高压的加载梯度增加使得锤击波传播速度及强度增强,而压力卸载方式对锤击波强度的影响不明显.在亚声速和超声速来流条件下,增加瞬时高压峰值均使得锤击波荷载强度显著增强,并近似符合二次函数分布规律,而且超声速来流条件下锤击波强度较亚声速来流更强.   相似文献   
40.
以一定高度和速度飞行的母弹从其伞弹舱中抛撒伞弹系统群,各个伞弹系统的姿态摆动情况将影响其落点及落角,进而影响其作战效能。采用立式风洞试验和非定常数值仿真(CFD),分析平衡风速下十字形伞弹系统的姿态摆动情况。通过立式风洞试验,可确定柔性伞的外形、伞弹系统的阻力系数和摆动频率,并创新"拉拽式"试验模型的约束方法;采用基于三维N-S方程的CFX软件,进行伞弹系统非定常数值仿真,分析其摆动机理。结果表明:数值仿真得到的阻力系数、法向力系数、侧向力系数及其摆动频率,均与风洞试验结果相吻合,即数值仿真结果能够反映风洞试验中伞弹系统的摆动情况;伞弹系统的流场极不稳定,伞衣内部有一对方向相反、强度交替变化的旋涡,伞衣外部存在不稳定分离流动,二者相互关联,使得气动参数呈周期性波动,导致伞弹系统的姿态摆动。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号