首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   10篇
  国内免费   7篇
航空   16篇
航天技术   87篇
航天   29篇
  2023年   7篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   24篇
  2013年   6篇
  2012年   6篇
  2011年   11篇
  2010年   8篇
  2009年   6篇
  2008年   23篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   6篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1986年   1篇
  1981年   1篇
排序方式: 共有132条查询结果,搜索用时 140 毫秒
51.
Ground-penetrating radar (GPR) is the leading geophysical candidate technology for future lunar missions aimed at mapping shallow stratigraphy (<5 m). The instrument’s exploration depth and resolution capabilities in lunar materials, as well as its small size and lightweight components, make it a very attractive option from both a scientific and engineering perspective. However, the interaction between a GPR signal and the rover body is poorly understood and must be investigated prior to a space mission. In doing so, engineering and survey design strategies should be developed to enhance GPR performance in the context of the scientific question being asked. This paper explores the effects of a rover (simulated with a vertical metal plate) on GPR results for a range of heights above the surface and antenna configurations at two sites: (i) a standard GPR testing site with targets of known position, size, and material properties, and; (ii) a frozen lake for surface reflectivity experiments. Our results demonstrate that the GPR antenna configuration is a key variable dictating instrument design, with the XX polarization considered optimal for minimizing data artifact generation. These findings could thus be used to help guide design requirements for an eventual flight instrument.  相似文献   
52.
The present status of the Japanese Penetrator Mission: LUNAR-A   总被引:1,自引:0,他引:1  
The scientific objective of the LUNAR-A Japanese Penetrator Mission is to explore the lunar interior by seismic and heat-flow experiments. Two penetrators containing two-component seismometer and heat-flow probes will be deployed from a spacecraft onto the lunar surface, one on the nearside and the other on the farside of the moon. The data obtained by the penetrators will be transmitted to the ground station by way of the LUNAR-A mother spacecraft orbiting at an altitude of about 200 km. The seismic observations are expected to provide key data on the size of the lunar core, as well as data on the deep mantle structure. The heat-flow measurements at two different sites will also provide important data on the thermal structure and bulk concentrations of heat-generating elements in the Moon. These data will provide much stronger geophysical constraints on the origin and evolution of the Moon than has ever been obtained. The LUNAR-A mission was supposed to be launched in 2004. However, a malfunction of spacecraft subsystem and technical issues for penetrator system occurred during the course of the qualification level test. Therefore, further improvements and some modifications were considered to be required for reliability and robustness. The development of the mother spacecraft was temporarily suspended, while we have put a three-year program into effect to solve the penetrator technology issues.  相似文献   
53.
The Japanese lunar mission SELENE: Science goals and present status   总被引:1,自引:0,他引:1  
The Japanese lunar mission SELENE (SELenological and ENgineering Explorer) has been in development to target launch scheduled 2007 summer by H-IIA rocket. The SELENE is starting final integration test after SAR (System Acceptance Review), SRR (System Reliability Review) and instrument environment test. The SELENE is a remote-sensing mission orbiting 100 km altitude of the Moon for nominal one year and extended some months to collect the data for studying the origin and evolution of the Moon. Fourteen instruments and experiment systems are preparing for studies of the Moon, in the Moon, and from the Moon; global element and mineral compositions, topological structure, gravity field of whole moon, and electromagnetic and particle environment of the Moon. The new data center SOAC (SELENE Operation and data Analysis Center) are completed to construct in JAXA Sagamihara campus, and end-to-end test will be carried out between SOAC and data downlink stations.  相似文献   
54.
Lunar laser ranging (LLR) measurements are crucial for advanced exploration of the laws of fundamental gravitational physics and geophysics as well as for future human and robotic missions to the Moon. The corner-cube reflectors (CCR) currently on the Moon require no power and still work perfectly since their installation during the project Apollo era. Current LLR technology allows us to measure distances to the Moon with a precision approaching 1 mm. As NASA pursues the vision of taking humans back to the Moon, new, more precise laser ranging applications will be demanded, including continuous tracking from more sites on Earth, placing new CCR arrays on the Moon, and possibly installing other devices such as transponders, etc. for multiple scientific and technical purposes. Since this effort involves humans in space, then in all situations the accuracy, fidelity, and robustness of the measurements, their adequate interpretation, and any products based on them, are of utmost importance. Successful achievement of this goal strongly demands further significant improvement of the theoretical model of the orbital and rotational dynamics of the Earth–Moon system. This model should inevitably be based on the theory of general relativity, fully incorporate the relevant geophysical processes, lunar librations, tides, and should rely upon the most recent standards and recommendations of the IAU for data analysis. This paper discusses methods and problems in developing such a mathematical model. The model will take into account all the classical and relativistic effects in the orbital and rotational motion of the Moon and Earth at the sub-centimeter level. The model is supposed to be implemented as a part of the computer code underlying NASA Goddard’s orbital analysis and geophysical parameter estimation package GEODYN and the ephemeris package PMOE 2003 of the Purple Mountain Observatory. The new model will allow us to navigate a spacecraft precisely to a location on the Moon. It will also greatly improve our understanding of the structure of the lunar interior and the nature of the physical interaction at the core–mantle interface layer. The new theory and upcoming millimeter LLR will give us the means to perform one of the most precise fundamental tests of general relativity in the solar system.  相似文献   
55.
Habitat in lava tubes recently discovered on the Moon and Mars, should become a unifying concept for occupancy. Basic motivations and specifications for such a habitat are briefly reviewed.  相似文献   
56.
Chang'E-1, the first lunar mission in China, was successfully launched on October 24,2007, which opened the prelude of China's Lunar Exploration Program. Later on, the Chang'E-2 and Chang'E-3 satellites were successfully launched in 2010 and 2013, respectively. In order to achieve the science objectives, various payloads boarded the spacecraft. The scientific data from these instruments were received by Beijing and Kunming ground stations simultaneously. Up to now, about 5.628 Terabytes of raw data were received totally. A series of research results has been achieved. This paper presents a brief introduction to the main scientific results and latest progress from Chang'E-3 mission.  相似文献   
57.
Using Lunar Prospector data, we review the magnetic field and electron signatures of solar wind interaction with lunar crustal magnetic sources. Magnetic field amplifications, too large to represent direct measurements of crustal fields, appear in the solar wind over strong crustal sources, with the chance of observing these amplifications depending on upstream solar wind parameters. We often observe increases in low-energy (?100 eV) electron energy fluxes simultaneously with large magnetic field amplifications, consistent with an increase in plasma density across a shock surface. We also often observe low frequency wave activity in the magnetic field data (both broadband turbulence and monochromatic waves), often associated with electron energization, sometimes up to keV energies. Electron energization appears to be correlated more closely with wave activity than with magnetic amplifications. Detailed studies of the interaction region will be necessary in order to understand the physics of the Moon–solar wind interaction. At present, the Moon represents the only natural laboratory available to us to study solar wind interaction with small-scale crustal magnetic fields, though simulation results and theoretical work can also help us understand the physical processes at work.  相似文献   
58.
使用面包板模型和仿真方法,在实验室内研究月球指向就位测量望远镜(ILOM)的基本特征,如望远镜星像中心点位置精度、温度效应、倾斜以及地面震动的影响。使用这个技术预期在月球表面观测月球自转时可以达到1ms的精度。将在地面上开展测试验证观测以全面评价达到优于0.1″观测精度目标所需条件和特征。  相似文献   
59.
This study explores the Design Reference Mission (DRM) architecture developed by Hufenbach et al. (2015) as a prelude to the release of the 2018 Global Exploration Roadmap (GER) developed by the International Space Exploration Coordination Group (ISECG). The focus of this study is the exploration of the south polar region of the Moon, a region that has not been visited by any human missions, yet exhibits a multitude of scientifically important locations – the investigation of which will address long standing questions in lunar research. This DRM architecture involves five landing sites (Malapert massif, South Pole/Shackleton crater, Schrödinger basin, Antoniadi crater, and the South Pole-Aitken basin center), to be visited in sequential years by crew, beginning in 2028. Two Lunar Electric Rovers (LER) are proposed to be tele-robotically operated between sites to rendez-vous with crew at the time of the next landing. With engineering parameters in mind we explore the feasibility of tele-robotic operation of these LERs between lunar landing sites, and identify potential high interest sampling locations en-route. Additionally, in-depth sample collection and return traverses are identified for each individual landing site across key geologic terrains that also detail crew Extra-Vehicular Activity (EVA). Exploration at and between landing sites is designed to address a suite of National Research Council (2007) scientific concepts.  相似文献   
60.
针对月球南极探测任务,综合考虑中国地基深空测控系统现状、月球南极地区光照及地球再入终端等约束条件,利用月球反垂点概念,提出一种从环月轨道出发的三级返回窗口搜索策略.其次,提出一种改进多圆锥截线法,将月球非球形摄动加入到区间的轨道外推中,基于二级返回窗口对返回轨道进行了初步设计.给出以月球南极地区Shackleton撞击坑边缘一点为假定落点,于2020年自月球南极地区返回的仿真算例.仿真结果表明:一方面,窗口搜索方法可以有效解决多约束条件下的月球南极返回窗口设计问题;另一方面,改进多圆锥截线法作为一种初始轨道设计方法,可以有效减少再入误差,同时为后续高精度轨道积分提供良好初值.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号