首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   44篇
  国内免费   7篇
航空   21篇
航天技术   140篇
航天   141篇
  2024年   3篇
  2023年   9篇
  2022年   12篇
  2021年   8篇
  2020年   6篇
  2019年   8篇
  2018年   10篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   31篇
  2013年   19篇
  2012年   15篇
  2011年   26篇
  2010年   18篇
  2009年   14篇
  2008年   31篇
  2007年   14篇
  2006年   12篇
  2005年   13篇
  2004年   9篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   8篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
排序方式: 共有302条查询结果,搜索用时 46 毫秒
121.
The Japanese lunar mission SELENE: Science goals and present status   总被引:1,自引:0,他引:1  
The Japanese lunar mission SELENE (SELenological and ENgineering Explorer) has been in development to target launch scheduled 2007 summer by H-IIA rocket. The SELENE is starting final integration test after SAR (System Acceptance Review), SRR (System Reliability Review) and instrument environment test. The SELENE is a remote-sensing mission orbiting 100 km altitude of the Moon for nominal one year and extended some months to collect the data for studying the origin and evolution of the Moon. Fourteen instruments and experiment systems are preparing for studies of the Moon, in the Moon, and from the Moon; global element and mineral compositions, topological structure, gravity field of whole moon, and electromagnetic and particle environment of the Moon. The new data center SOAC (SELENE Operation and data Analysis Center) are completed to construct in JAXA Sagamihara campus, and end-to-end test will be carried out between SOAC and data downlink stations.  相似文献   
122.
Lunar laser ranging (LLR) measurements are crucial for advanced exploration of the laws of fundamental gravitational physics and geophysics as well as for future human and robotic missions to the Moon. The corner-cube reflectors (CCR) currently on the Moon require no power and still work perfectly since their installation during the project Apollo era. Current LLR technology allows us to measure distances to the Moon with a precision approaching 1 mm. As NASA pursues the vision of taking humans back to the Moon, new, more precise laser ranging applications will be demanded, including continuous tracking from more sites on Earth, placing new CCR arrays on the Moon, and possibly installing other devices such as transponders, etc. for multiple scientific and technical purposes. Since this effort involves humans in space, then in all situations the accuracy, fidelity, and robustness of the measurements, their adequate interpretation, and any products based on them, are of utmost importance. Successful achievement of this goal strongly demands further significant improvement of the theoretical model of the orbital and rotational dynamics of the Earth–Moon system. This model should inevitably be based on the theory of general relativity, fully incorporate the relevant geophysical processes, lunar librations, tides, and should rely upon the most recent standards and recommendations of the IAU for data analysis. This paper discusses methods and problems in developing such a mathematical model. The model will take into account all the classical and relativistic effects in the orbital and rotational motion of the Moon and Earth at the sub-centimeter level. The model is supposed to be implemented as a part of the computer code underlying NASA Goddard’s orbital analysis and geophysical parameter estimation package GEODYN and the ephemeris package PMOE 2003 of the Purple Mountain Observatory. The new model will allow us to navigate a spacecraft precisely to a location on the Moon. It will also greatly improve our understanding of the structure of the lunar interior and the nature of the physical interaction at the core–mantle interface layer. The new theory and upcoming millimeter LLR will give us the means to perform one of the most precise fundamental tests of general relativity in the solar system.  相似文献   
123.
行为控制月球车的虚拟主体避障技术   总被引:1,自引:0,他引:1  
论述了基于行为代理体的月球车避障技术。由月球地形高程图得到当地水平面下二色障碍图及着色障碍图,利用月球车代理体在障碍图及着色障碍图中进行避障学习与控制,将获得的控制量投影到月球车体坐标系下得到真实地形上的控制量,达到避障控制与运动规划的目的。利用障碍入侵月球车安全线的径向距离作为避障控制器输入,并由月球车目标趋向行为及避障行为输出融合突现出趋向目标的避障行为。仿真结果表明基于代理体的避障控制器设计方法使运行于真实环境下月球车的避障具有很高的可靠性。  相似文献   
124.
月球探测器转移轨道的中途修正   总被引:11,自引:3,他引:11  
月球探测器的中途制导指的是在其转移轨道中途对轨道进行修正,使其按预定轨道飞行。本文研究的中途修正问题是确定所需的速度修正脉冲,使探测器不断接近标称轨道,并以预定状态到达月球,完成预定的飞行任务。本文首先建立中途修正的模型,其中月球和太阳的位置由DE405得到。然后,采用精确的数值积分方法找出满足预定条件(近地点高度、近月点高度及转移时间)的转移轨道。以该轨道作为标称轨道,分析中途修正所需要的速度修正脉冲与发射入轨时的初始误差(近地点速度误差、入轨高度误差、发射窗口误差等)和修正时刻的关系。最后分析两次中途修正的速度修正脉冲和修正时刻的关系,并得出适合的中途修正时刻。  相似文献   
125.
Chang'E-1, the first lunar mission in China, was successfully launched on October 24,2007, which opened the prelude of China's Lunar Exploration Program. Later on, the Chang'E-2 and Chang'E-3 satellites were successfully launched in 2010 and 2013, respectively. In order to achieve the science objectives, various payloads boarded the spacecraft. The scientific data from these instruments were received by Beijing and Kunming ground stations simultaneously. Up to now, about 5.628 Terabytes of raw data were received totally. A series of research results has been achieved. This paper presents a brief introduction to the main scientific results and latest progress from Chang'E-3 mission.  相似文献   
126.
基于Zernike矩的高精度太阳图像质心提取算法   总被引:2,自引:0,他引:2  
在基于太阳观测的月球车天文导航系统中,针对太阳传感器中图像噪声以及典型图像退化的不良影响,提出了一种基于Zernike矩的高精度太阳质心提取算法。采用Sobel算子进行边缘检测,Zernike矩重定位亚像素边缘,用最小二乘法拟合圆心。而当图像存在退化时,进行有效圆边缘点检测后,再用该法提取质心。从理论上分析了Zernike矩亚像素边缘检测对圆拟合法的改进作用。利用仿真图像和地表实验图像,将本文方法与传统的重心法、带阈值的重心法和圆拟合法进行了比较。结果表明,本文方法精度更高,具有更好的稳定性,可以对月球车天文导航精度的提高起良好作用。  相似文献   
127.
Eight lunar areas, each ∼200 km in diameter, are identified as targets for coordinated science and instrument calibration for the orbital missions soon to be flown. Instrument teams from SELENE, Chang’E, Chandrayaan-1, and LRO are encouraged to participate in a coordinated activity of early-release data that will improve calibration and validation of data across independent and diverse instruments. The targets are representative of important lunar terrains and geologic processes and thus will also provide a broad introduction to lunar science for new investigators. We briefly identify additional cross-calibration issues for instruments that produce time series data rather than maps.  相似文献   
128.
熊健  龚程  韦兴宇  李志彬 《宇航学报》2022,43(11):1429-1443
概述了当前可组装轻质空间结构的构建技术方法,具体包含嵌锁组装、堆叠组装、折叠成型、充气成型和张拉整体成型五种主流技术;以太空建造、月面栖息地和近空间飞行器为典型应用,介绍了现有可组装轻质空间结构技术的航空航天应用。最后,对比分析了各空间结构技术,讨论了现有挑战和技术难点,并对其未来发展方向进行了展望,旨在为今后航空航天任务中所需的轻量化空间结构研究提供参考。  相似文献   
129.
针对传统结构优化设计中,精细化模型求解复杂结构动响应过于耗时的问题,引入保精度、高效的脉冲子结构方法,提出一种考虑结构动力学响应的优化设计流程,并对月球探测器太阳翼结构进行优化分析,获得了太阳翼结构设计参数,有效地提高了太阳翼动力学特性指标,改善了月球探测器关键位置处的动力学环境。结果表明,脉冲子结构方法可以有效应用于航天器结构动力学优化设计,提高优化设计效率,所得优化结果对实际结构设计具有一定指导意义。  相似文献   
130.
As NASA implements the U.S. Space Exploration Policy, life support systems must be provided for an expanding sequence of exploration missions. NASA has implemented effective life support for Apollo, the Space Shuttle, and the International Space Station (ISS) and continues to develop advanced systems. This paper provides an overview of life support requirements, previously implemented systems, and new technologies being developed by the Exploration Life Support Project for the Orion Crew Exploration Vehicle (CEV) and Lunar Outpost and future Mars missions. The two contrasting practical approaches to providing space life support are (1) open loop direct supply of atmosphere, water, and food, and (2) physicochemical regeneration of air and water with direct supply of food. Open loop direct supply of air and water is cost effective for short missions, but recycling oxygen and water saves costly launch mass on longer missions. Because of the short CEV mission durations, the CEV life support system will be open loop as in Apollo and Space Shuttle. New life support technologies for CEV that address identified shortcomings of existing systems are discussed. Because both ISS and Lunar Outpost have a planned 10-year operational life, the Lunar Outpost life support system should be regenerative like that for ISS and it could utilize technologies similar to ISS. The Lunar Outpost life support system, however, should be extensively redesigned to reduce mass, power, and volume, to improve reliability and incorporate lessons learned, and to take advantage of technology advances over the last 20 years. The Lunar Outpost design could also take advantage of partial gravity and lunar resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号