首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  国内免费   1篇
航空   1篇
航天技术   9篇
航天   10篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2014年   5篇
  2013年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
11.
12.
Exploration of the inner planets of the Solar System is vital to significantly enhance the understanding of the formulation of the Earth and other planets. This paper therefore considers the development of novel orbits of Mars, Mercury and Venus to enhance the opportunities for remote sensing of these planets. Continuous acceleration is used to extend the critical inclination of highly elliptical orbits at each planet and is shown to require modest thrust magnitudes. This paper also presents the extension of existing sun-synchronous orbits around Mars. However, unlike Earth and Mars, natural sun-synchronous orbits do not exist at Mercury or Venus. This research therefore also uses continuous acceleration to enable circular and elliptical sun-synchronous orbits, by ensuring that the orbit's nodal precession rate matches the planets mean orbital rate around the Sun, such that the lighting along the ground-track remains approximately constant over the mission duration. This property is useful both in terms of spacecraft design, due to the constant thermal conditions, and for comparison of images. Considerably high thrust levels are however required to enable these orbits, which are prohibitively high for orbits with inclinations around 90°. These orbits therefore require some development in electric propulsion systems before becoming feasible.  相似文献   
13.
In this study, the Earth’s Trojan asteroid 2010 TK7 is selected as the rendezvous target. The multiple flyby sequence of asteroid exploration was proposed by optimizing the probe’s orbit. Impulsive maneuvers and low-thrust propulsion were used respectively to design the trajectories of the multiple asteroids exploration mission. Under impulsive maneuvers, gravity assist technique was adopted to reduce fuel consumption. First a reference orbit with only 2010 TK7 as the rendezvous target was designed. Then five asteroids near the reference orbit were selected as candidates. Finally, we obtained a multiple asteroids exploration sequence of three asteroids based on gravity assist technique and genetic algorithm, and an additional velocity impulse of 0.4?km/s was required. In the subsequent section, a sixth-degree inverse polynomial shape-based method is applied to the low-thrust trajectory design of 2010 TK7, and the exploration sequence under the action of low-thrust propulsion was provided.  相似文献   
14.
Optimal feedback control is classically based on linear approximations, whose accuracy drops off rapidly in highly nonlinear dynamics. Several nonlinear optimal feedback control strategies have appeared in recent years. Among them, differential algebraic techniques have been used to tackle nonlinearities by expanding the solution of the optimal control problem about a reference trajectory and reducing the computation of optimal feedback control laws to the evaluation of high order polynomials. However, the resulting high order method could not handle control saturation constraints, which remain a critical facet of nonlinear optimal feedback control. This work introduces the management of saturating actuators in the differential algebraic method. More specifically, the constraints are included in the optimal control problem formulation and differential algebra is used to expand the associated optimal bang–bang solution with respect to the initial and terminal conditions. Optimal feedback control laws for thrust direction and switching times are again computed by evaluating the resulting polynomials. Illustrative applications are presented in the frame of the optimal low-thrust transfer to asteroid 1996 FG3.  相似文献   
15.
This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost.  相似文献   
16.
针对太阳高纬度探测器轨道设计任务要求, 研究了基于多目标遗传算法的小推力借力飞行轨道设计方法. 基于圆锥曲线拼接假设, 将探测器轨道分为小推力日心转移轨道段和木星借力飞行轨道段两部分. 在日心转移轨道段, 选择燃料最省为优化目标, 采用标称轨道法设计小推力的推力控制率. 在借力飞行轨道段, 选择借力后日心轨道倾角为优化目标, 对借力飞行的关键参数进行分析. 采用多目标遗传算法对该多目标进行了优化. 结果表明, 多目标遗传算法可以有效地解决轨道设计中的多目标优化问题. 优化得到的小推力控制率不仅可以节省发射能量, 还可以保证借力飞行后探测器能够进入太阳高纬度探测轨道.   相似文献   
17.
基于多冲量能耗估算的小推力任务窗口搜索   总被引:1,自引:0,他引:1  
针对小推力轨道设计中任务窗口参数具有范围跨度大、非连续性强、对设计结果影响显著等特点,提出了一种基于多冲量能耗估算的任务窗口搜索方法.该方法基于多冲量轨道和小推力轨道的能耗一致性,先由朗伯特两冲量轨道经过数次迭代扩展快速获得多冲量轨道,再通过多冲量轨道能耗估算对任务区间进行全局栅格搜索,最终得到任务窗口的可行区域.仿真结果表明:1)该方法同时适用于交会和飞越任务;2)同朗伯特两冲量相比,它与小推力轨道能耗的一致性更强;3)同Sims和Flanagan最优多冲量相比,计算时间缩短了1~2个量级,计算效率显著提高.地球—火星交会任务的仿真应用表明,该方法只需8.59s即可获得任务窗口的可行区域,进而快速给出小推力最优转移轨道,验证了该方法的有效性.  相似文献   
18.
基于退火遗传算法的小推力轨道优化问题研究   总被引:3,自引:2,他引:3  
任远  崔平远  栾恩杰 《宇航学报》2007,28(1):162-166,202
利用退火遗传算法解决小推力轨道优化问题。首先利用传统混合法将轨道优化问题归结为受非线性方程约束的参数优化问题。通过结合退火和随机惩罚函数对约束条件进行处理后,用遗传算法求解这个参数优化问题。最后再采用局部优化算法提高解的精度。这种算法既保持了传统混合法精度高、解轨线光滑的优点,又克服了传统轨道优化方法收敛性差、初始猜测困难、容易陷入局部极小解的缺点。在本文的最后,利用文中提出的轨道优化算法求解“喷-停-喷”型定常推力幅值地球-木星轨道转移问题。算例证明此算法可以有效地求解小推力轨道转移问题,尤其适用于传统轨道优化方法难以求解的复杂轨道优化问题。  相似文献   
19.
The aim of the work is to design a low-thrust transfer from a Low Earth Orbit to a “useful” periodic orbit in the Earth–Moon Circular Restricted Three Body Model (CR3BP). A useful periodic orbit is here intended as one that moves both in the Earth–Moon plane and out of this plane without any requirements of propellant mass. This is achieved by exploiting a particular class of periodic orbits named Backflip orbits, enabled by the CR3BP. The unique characteristics of this class of periodic solutions allow the design of an almost planar transfer from a geocentric orbit and the use of the Backflip intrinsic characteristics to explore the geospace out of the Earth–Moon plane. The main advantage of this approach is that periodic plane changes can be obtained by performing an almost planar transfer. In order to save propellant mass, so as to increase the scientific payload of the mission, a low-powered transfer is considered. This foresees a thrusting phase to gain energy from a departing circular geocentric orbit and a second thrusting phase to match the state of the target Backflip orbit, separated by an intermediate ballistic phase. This results in a combined application of a low-thrust manoeuvre and of a periodical solution in the CR3BP to realize a new class of missions to explore the Earth–Moon neighbourhoods in a quite inexpensive way. In addition, a low-thrust transit between two different Backflip orbits is analyzed and considered as a possible extension of the proposed mission. Thus, also a Backflip-to-Backflip transfer is addressed where a low-powered probe is able to experience periodic excursions above and below the Earth–Moon plane only performing almost planar and very short transfers.  相似文献   
20.
Traditional station-keeping for Earth observation satellites with chemical thrusters generally involves maneuvers every couple months that are able to change significantly the semi-major axis and the inclination. These strategies do not scale down to very low thrust level (a few hundreds of μN) electrical thrusters. This paper presents both in-plane and out-of-plane strategies that spread corrections over very long arcs and discretize them to tiny maneuvers every couple orbits, taking into account mission-constraints on maneuvers locations. These strategies scale up to medium thrust strategies, filling the gap between propulsion technologies. The out-of-plane strategy although features a new no-deadband property and controls the full orbital momentum. All strategies allow control very close to the reference (a few hundreds meters in osculating parameters) and very low cost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号