首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   33篇
  国内免费   2篇
航空   8篇
航天技术   347篇
航天   6篇
  2023年   6篇
  2022年   4篇
  2021年   20篇
  2020年   18篇
  2019年   18篇
  2018年   20篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2014年   37篇
  2013年   37篇
  2012年   16篇
  2011年   39篇
  2010年   24篇
  2009年   41篇
  2008年   35篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1990年   1篇
排序方式: 共有361条查询结果,搜索用时 0 毫秒
151.
For deriving global maps of the Total Electron Content (TEC) from space geodetic techniques usually observations from the Global Navigation Satellite System (GNSS) are taken. However, the GNSS stations are inhomogeneously distributed, with large gaps particularly over the sea surface.  相似文献   
152.
153.
The analysis of the behavior of the critical frequency foF2 during the 24th solar activity cycle (Danilov and Konstantinova, 2020a, c) is prolonged for two more months and the nighttime hours. In addition to the Rz and Ly-α indices used in the aforementioned papers for correction of the F10.7 index during the 24th cycle, the commonly used Mg II index is added. The results confirm the previous conclusions on the existence of the “vague” period with chaotic behavior of foF2 and the recovery of the negative trend in foF2 after 2008–2010. A comparison of the F10.7 index with three other SA indices (Ly-α, Rz, and Mg II) for the 22nd, 23rd, and 24th SA cycles is performed. It is shown that the relationship between F10.7 and other indices is close in the 22nd and 23rd cycles but differs from that in the 24th cycle. The corrected values of F10.7 in the 24th cycle are proposed for analysis of ionospheric trends during that cycle.  相似文献   
154.
The propagation of radio signals in the Earth’s atmosphere is dominantly affected by the ionosphere due to its dispersive nature. Global Positioning System (GPS) data provides relevant information that leads to the derivation of total electron content (TEC) which can be considered as the ionosphere’s measure of ionisation. This paper presents part of a feasibility study for the development of a Neural Network (NN) based model for the prediction of South African GPS derived TEC. The South African GPS receiver network is operated and maintained by the Chief Directorate Surveys and Mapping (CDSM) in Cape Town, South Africa. Vertical total electron content (VTEC) was calculated for four GPS receiver stations using the Adjusted Spherical Harmonic (ASHA) model. Factors that influence TEC were then identified and used to derive input parameters for the NN. The well established factors used are seasonal variation, diurnal variation, solar activity and magnetic activity. Comparison of diurnal predicted TEC values from both the NN model and the International Reference Ionosphere (IRI-2001) with GPS TEC revealed that the IRI provides more accurate predictions than the NN model during the spring equinoxes. However, on average the NN model predicts GPS TEC more accurately than the IRI model over the GPS locations considered within South Africa.  相似文献   
155.
An electron density profile model with free parameters is introduced. Initially the parameters are calculated on the basis of the ionospheric characteristics automatically obtained from the ionograms by Autoscala and considering the helio-geophysical conditions. The technique used to adjust the free parameters to the particular ionograms recorded is presented.  相似文献   
156.
The solar flare of 23 February 1956 and the resulting geophysical disturbance ranks as one of the most remarkable solar-terrestrial events of the twentieth century. It sparked many papers and has seldom been equalled. Fifty years after the International Geophysical Year, it seems timely to review the observations of the event from today’s perspective, and to draw on the recollections of scientists who were active at the time.  相似文献   
157.
Thermospheric infrared radiance at 4.3 μm is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO+ (i.e., NO+(v)) and subsequent 4.3 μm emission in the ionospheric E-region. Large enhancements of nighttime 4.3 μm emission were observed by the TIMED/SABER instrument during the April 2002 and October–November 2003 solar storms. Global measurements of infrared 4.3 μm emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO+ concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 μm emission observed from SABER and assess the impact of NO+(v) 4.3 μm emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument.  相似文献   
158.
Observations of the direction of arrival and time of flight of HF signals propagating on a 1400 km path oriented along the mid-latitude trough are presented. At night, the signal commonly arrives from directions offset from the great circle bearing by up to 80° and these events have been categorised into five main types. Statistics indicating how often these categories of propagation were observed in the period August 2006 to September 2007 are presented. The physical mechanisms which result in the off great circle propagation are also discussed.  相似文献   
159.
Monthly average electron density profiles have been calculated from hourly electron density N(h) recorded in 26 digisonde stations distributed worldwide encompassing the time interval 1998–2006. The ionospheric electron density peak height of the F2 region, hmF2, and the effective scale height at the hmF2, Hm, deduced from average profiles have been analyzed to obtain the quiet-time behavior and have been analytically modeled by the spherical harmonic analysis (SH) technique using the modip latitude as the coordinate of the reference system. The coefficients of the SH models of hmF2 and Hm are bounded to the solar activity, and the temporal and seasonal variations are considered by Fourier expansion of the coefficients. The SH models provide a tool to predict hmF2 and Hm located anywhere in the range of latitudes between of 70°N and 70°S and at any time. The SH analytical model for hmF2 improves the fit to the observations by 10% in average compared to the IRI prediction, and it might improve the IRI prediction of hmF2 by more than 30% at high and low latitudes. The analytical model for Hm predicts the quiet behavior of the effective scale height with accuracy better than 15% in average which enables to obtain a good estimation of vertical profiles. These results could be useful to estimate information for the topside profile formulation.  相似文献   
160.
Interaction of a powerful obliquely incident wave beam of decameter radio waves with the ionospheric F2 layer is analyzed. Much like the linear case, propagation through the natural anti-waveguide layer F2 splits the initial beam. Some part of its energy leaks through the ionospheric layer, the other part goes back along a downward trajectory. However, nonlinearity leads to further stratification of the ionospheric layer. A new feature, in comparison with the linear case, is appearing a narrow waveguide beneath the F2 layer maximum which traps a small part of the beam energy. We study the relationship between these parts of the wave field in a simplified model of parabolic F2 layer, with nonlinearity caused by thermal plasma expulsion from the high field intensity region. Analytical results are supplemented with numerical estimates of the effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号