首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   459篇
  免费   160篇
  国内免费   61篇
航空   114篇
航天技术   272篇
综合类   18篇
航天   276篇
  2024年   1篇
  2023年   15篇
  2022年   24篇
  2021年   39篇
  2020年   26篇
  2019年   48篇
  2018年   36篇
  2017年   30篇
  2016年   33篇
  2015年   25篇
  2014年   82篇
  2013年   51篇
  2012年   45篇
  2011年   38篇
  2010年   39篇
  2009年   29篇
  2008年   32篇
  2007年   26篇
  2006年   14篇
  2005年   10篇
  2004年   7篇
  2003年   9篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1986年   1篇
排序方式: 共有680条查询结果,搜索用时 31 毫秒
331.
For extrasolar space exploration it might be very convenient to take advantage of space environmental effects such as solar radiation heating to accelerate a solar sail coated by materials that undergo thermal desorption at a particular temperature. Thermal desorption can provide additional thrust as heating liberates atoms, embedded on the surface of the solar sail. We are considering orbital dynamics of a solar sail coated with materials that undergo thermal desorption at a specific temperature, as a result of heating by solar radiation at a particular heliocentric distance, and focus on two scenarios that only differ in the way the sail approaches the Sun. For each scenario once the perihelion is reached, the sail coat undergoes thermal desorption. When the desorption process ends, the sail then escapes the Solar System having the conventional acceleration due to solar radiation pressure. We study the dependence of a cruise speed of a solar sail on perihelion of the orbit where the solar sail is deployed. The following scenarios are considered and analyzed: (1) Hohmann transfer plus thermal desorption. In this scenario the sail would be carried as a payload to the perihelion with a conventional propulsion system by a Hohmann transfer from Earth’s orbit to an orbit very close to the Sun and then be deployed. Our calculations show that the cruise speed of the solar sail varies from 173?km/s to 325?km/s that corresponds to perihelion 0.3?AU and 0.1 AU, respectively. (2) Elliptical transfer plus Slingshot plus thermal desorption. In this scenario the transfer occurs from Earth’s orbit to Jupiter’s orbit; then a Jupiter’s fly-by leads to the orbit close to the Sun, where the sail is deployed and thermal desorption comes active. In this case the cruise speed of the solar sail varies from 187?km/s to 331?km/s depending on the perihelion of the orbit. Our study analyses and compares the different scenarios in which thermal desorption comes beside traditional propulsion systems for extrasolar space exploration.  相似文献   
332.
Radar Maneuvering Targets Tracking(RMTT) in clutter is a quite challenging issue due to the errors in the models and the varying dynamics of the processes. Modern radar tracking system calls for the adaptive signal and data processing algorithm urgently to adapt the uncertainty of the environment. The mechanism of human cognition can help persons cope with the similar diffi-culties in visual tracking. Inspired by human cognition mechanism, a comprehensive method for RMTT is proposed. In the method, the model transition probability in Interacting Multiple Model(IMM) and the validation gate can be adjusted dynamically with target maneuver; the waveform in radar transmitter can vary with the perception of the environment. Experimental results in cluttered scenes show that the proposed algorithm is more accurate for perceiving the environment and targets, and the waveform selection algorithm is better than that with fixed waveform.  相似文献   
333.
As NASA implements the U.S. Space Exploration Policy, life support systems must be provided for an expanding sequence of exploration missions. NASA has implemented effective life support for Apollo, the Space Shuttle, and the International Space Station (ISS) and continues to develop advanced systems. This paper provides an overview of life support requirements, previously implemented systems, and new technologies being developed by the Exploration Life Support Project for the Orion Crew Exploration Vehicle (CEV) and Lunar Outpost and future Mars missions. The two contrasting practical approaches to providing space life support are (1) open loop direct supply of atmosphere, water, and food, and (2) physicochemical regeneration of air and water with direct supply of food. Open loop direct supply of air and water is cost effective for short missions, but recycling oxygen and water saves costly launch mass on longer missions. Because of the short CEV mission durations, the CEV life support system will be open loop as in Apollo and Space Shuttle. New life support technologies for CEV that address identified shortcomings of existing systems are discussed. Because both ISS and Lunar Outpost have a planned 10-year operational life, the Lunar Outpost life support system should be regenerative like that for ISS and it could utilize technologies similar to ISS. The Lunar Outpost life support system, however, should be extensively redesigned to reduce mass, power, and volume, to improve reliability and incorporate lessons learned, and to take advantage of technology advances over the last 20 years. The Lunar Outpost design could also take advantage of partial gravity and lunar resources.  相似文献   
334.
A more flexible policy basis from which to manage our planet in the 21st century is desirable. As one contribution, we note that synergies between space exploration and the preservation of our habitat exist, and that protecting life on Earth requires similar concepts and information as investigations of life beyond the Earth, including the expansion of human presence in space. Instrumentation and data handling to observe both planetary objects and planet Earth are based on similar techniques. Moreover, while planetary surface operations are conducted under different conditions, the technology to probe the surface and subsurface of both the Earth and other planets requires similar tools, such as radar, seismometers, and drilling devices. The Earth observation community has developed some exemplary tools and has featured successful international cooperation in data handling and sharing that could be equally well applied to robotic planetary exploration. Here we propose a network involving both communities that will enable the interchange of scientific insights and the development of new policies and management strategies. Those tools can provide a vital forum through which the management of this planet can be assisted, and in which a new bridge between the Earth-centric and space-centric communities can be built.  相似文献   
335.
For the evaluation of organ dose and dose equivalent of astronauts on space shuttle and the International Space Station (ISS) missions, the CAMERA models of CAM (Computerized Anatomical Male) and CAF (Computerized Anatomical Female) of human tissue shielding have been implemented and used in radiation transport model calculations at NASA. One of new human geometry models to meet the “reference person” of International Commission on Radiological Protection (ICRP) is based on detailed Voxel (volumetric and pixel) phantom models denoted for male and female as MAX (Male Adult voXel) and FAX (Female Adult voXel), respectively. We compared the CAM model predictions of organ doses to those of MAX model, since the MAX model represents the male adult body with much higher fidelity than the CAM model currently used at NASA. Directional body-shielding mass was evaluated for over 1500 target points of MAX for specified organs considered to be sensitive to the induction of stochastic effects. Radiation exposures to solar particle event (SPE), trapped protons, and galactic cosmic ray (GCR) were assessed at the specific sites in the MAX phantom by coupling space radiation transport models with the relevant body-shielding mass. The development of multiple-point body-shielding distributions at each organ made it possible to estimate the mean and variance of organ doses at the specific organ. For the estimate of doses to the blood forming organs (BFOs), data on active marrow distributions in adult were used to weight the bone marrow sites over the human body. The discrete number of target points of MAX organs resulted in a reduced organ dose and dose equivalent compared to the results of CAM organs especially for SPE, and should be further investigated. Differences of effective doses between the two approaches were found to be small (<5%) for GCR.  相似文献   
336.
火星探测转移轨道中途修正分析   总被引:1,自引:0,他引:1  
高飞  苏宪程 《宇航学报》2010,31(11):2530-2535
中途修正分析是深空探测任务设计的关键步骤。首先讨论火星探测中途修正速度增量的求解方法,并由此对多次修正问题进行了Monte Carlo仿真分析。为满足不同的计算需求,针对速度增量的求解问题,给出了精确算法和快速算法两种思路,并对二者的解算精度进行了对比。以2018年某火星探测轨道为例,根据设定误差,计算得出了各次修正速度增量和残余误差随修正时间变化的数据曲线,进而对修正时机的选择问题进行了讨论,并对5次修正策略进行了仿真分析。实验表明,Monte Carlo仿真数据能够直观地反映多次修正的基本规律,讨论结果可以为修正策略的制定提供一种思路和数据参考。
  相似文献   
337.
分析了降落相机的功能及其功能扩展的必要性、工作过程,并根据这些功能变化和工作过程的变化设计了火星降落相机的帧频、积分时间等参数。文章对降落相机的功能分析、扩展以及工作过程分析和部分参数设计对于中国降落相机的研制有着一定的借鉴和促进作用。  相似文献   
338.
李金岭  乔书波  刘鹂  郭丽  钱志瀚 《宇航学报》2011,32(11):2333-2338
结合我国VLBI观测网现状,通过仿真计算分析了观测时延噪声与系统差、预报轨道偏差和测距误差等对航天器定位归算的影响。结果表明,仅利用VLBI跟踪时附加飞行器地心距约束有利于压制定位点的弥散。 3站 VLBI跟踪的定位解是有偏估计,4站跟踪时要求所加约束的误差应与预报轨道偏差相当,若过大将起不到压制定位点弥散的良好效果,若过小则会在定位结果中引入系统偏差。时延与测距的观测噪声主要引起定位点序列的弥散。若观测量存在系统差则将引起定位结果的系统性偏差,而且定位点序列会发生渐近线性趋势跳变。同时,这也可以作为观测量是否存在系统差的判据。另外,若某时刻前后VLBI跟踪站存在3、4站变更,定位点序列有时发生趋势变化。分析结论对于我国后续探月和萤火计划等工程实践具有借鉴意义。  相似文献   
339.
秦日鹏  徐坤  陈佳伟  韩亮亮  丁希仑 《航空学报》2021,42(1):524244-524244
针对星球探测,设计了一种具有高度对称性的六足轮腿机器人。为适应星球表面的复杂环境,该机器人具有不仅在机身水平面内中心对称而且关于机身水平面对称的结构,同时能够通过腿部构型的变化实现两种运动方式:轮行模式和足行模式。机器人的膝关节采用双平行四边形的传动机构,克服了现有足式机器人膝关节平行四边形机构传动的奇异问题,增加了膝关节的转动范围,实现了单腿关于机身水平面的对称运动。设计了一种基于指数坐标在SE (3)空间上规划的自适应步态,机器人可以利用该自适应步态在没有视觉传感器和局部地图的条件下,仅依靠足底力传感器和机身的惯性测量单元,实现自主连续稳定的行走。利用该机器人结构的高度对称性,提出了一种倾倒恢复策略以适应星球探测过程中的需求。以Adams和MATLAB为虚拟的仿真环境,对六足轮腿机器人的运动模式切换、自适应步态及倾倒恢复进行了仿真,验证了可行性。  相似文献   
340.
针对地火转移过程中出现的各种误差,基于地火转移轨道的误差传递矩阵分析误差发散的性质,在此基础上讨论如何选取轨道中途修正的时机,并基于该矩阵对地火转移轨道第一次中途轨道修正的速度增量进行估算。与微分修正方法的严格计算结果的比较表明,基于该方法定性研究地火转移轨道第1次中途修正速度增量变化和选取合适的轨道机动时机是可行的。使用蒙特卡洛数值模拟对上述方法和微分修正方法进行计算和比较,结果表明,第1次中途修正速度增量大小差异不超过1.2m/s,相对误差不超过6%。在轨道控制精度大约为1m/s的情况下使用该方法代替微分修正方法进行计算,可以节省大量的计算时间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号