首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   61篇
  国内免费   16篇
航空   101篇
航天技术   158篇
综合类   2篇
航天   50篇
  2024年   5篇
  2023年   23篇
  2022年   12篇
  2021年   33篇
  2020年   23篇
  2019年   22篇
  2018年   17篇
  2017年   10篇
  2016年   6篇
  2015年   8篇
  2014年   23篇
  2013年   27篇
  2012年   7篇
  2011年   36篇
  2010年   15篇
  2009年   8篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1996年   4篇
  1994年   2篇
  1990年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
51.
针对GNSS接收机高灵敏度跟踪问题,研究数字载波跟踪环热噪声相位颤动与相干积累时间长度的关系.在分析I·Q鉴相器的Costas载波环信号处理流程的基础上,建立了新的环路线性化模型.基于该模型,推导了由最佳模拟环路滤波器双线性变换离散化得到的数字载波跟踪环的噪声性能.数值分析表明:采用I·Q鉴相器的二阶、三阶数字载波环热噪声相位颤动,随相干积累时间的增大先减小后增大,存在热噪声相位颤动最小意义上的最佳相干积累时间.仿真结果验证了理论分析结论,同时表明新建模型对数字载波跟踪环的描述比传统模型更准确.文中给出的各载噪比和环路带宽组合条件下的最佳相干积累时间,可用于指导高灵敏度接收机载波跟踪环设计.  相似文献   
52.
Global Navigation Satellite System multipath reflectometry (GNSS-MR) technology has great potential for monitoring tide level changes. GNSS-MR techniques usually extract signal-to-noise ratio (SNR) residual sequences using quadratic polynomials; however, such algorithms are affected considerably by satellite elevation angles. To improve the stability and accuracy of an SNR residual sequence, this study proposed an SNR signal decomposition method based on empirical mode decomposition (EMD). First, the SNR signal is decomposed by EMD, following which the SNR residual sequence is obtained by combining the corresponding intrinsic mode function with the frequency range of the coherent signal. Second, the Lomb–Scargle spectrum is analyzed to obtain the frequency of the SNR residual sequence. Finally, the SNR frequency is converted into the tide height. To verify the validity of the SNR residual sequence obtained by EMD, the algorithm performance was assessed using multigroup satellite elevation angle intervals with measured data from two station, SC02 in the United States and RSBY in Australia. Experimental results demonstrated that the accuracy of the improved algorithm was improved in the low-elevation range. The improved algorithm demonstrated high monitoring accuracy, and the effective number was not less than 80% of the total in SC02, which means it could effectively describe the trend of the tide with accuracy of approximately 10 cm, meanwhile, the RMS error of RSBY could be reduced by 30 cm, to the maximum extent. The EMD method effectively expands the range of available GNSS-MR elevations, avoids the loss of effective information, enhances considerably the utilization rate of GNSS data, and improves the accuracy of GNSS-MR tide level monitoring.  相似文献   
53.
PPP (Precise Point Positioning) is a GNSS (Global Navigation Satellite Systems) positioning method that requires SSR (State Space Representation) corrections in order to provide solutions with an accuracy of centimetric level. The so-called RT-PPP (Real-time PPP) is possible thanks to real-time precise SSR products, for orbits and clocks, provided by IGS (International GNSS Service) and its associate analysis centers such as CNES (Centre National d'Etudes Spatiales). CNES SSR products also enable RT-PPP with integer ambiguity resolution. In GNSS related literature, PPP with ambiguity resolution (PPP-AR) in real-time is often referred as PPP-RTK (PPP – Real Time Kinematic). PPP-WIZARD (PPP - With Integer and Zero-difference Ambiguity Resolution Demonstrator) is a software that is made available by CNES. This software is capable of performing PPP-RTK. It estimates slant ionospheric delays and other GNSS positioning parameters. Since ionospheric effects are spatially correlated by GNSS data from active networks, it is possible to model and provide ionospheric delays for any position in the network coverage area. The prior knowledge ionospheric delays can reduce positioning convergence for PPP-RTK users. Real-time ionospheric models could benefit from highly precise ionospheric delays estimated in PPP-AR. In this study, we demonstrate that ionospheric delays obtained throughout PPP-AR estimation are actu ally ionospheric observables. Ionospheric observables are biased by an order of few meters caused by the receiver hardware biases. These biases prohibit the use of PPP-WIZARD ionospheric delays to produce ionospheric models. Receiver biases correction is essential to provide ionospheric delays while using PPP-AR based ionospheric observables. In this contribution, a method was implemented to estimate and mitigate receiver hardware biases influence on slant ionospheric observables from PPP-AR. In order to assess the proposed approach, PPP-AR data from 12 GNSS stations were processed over a two-month period (March and April 2018). A comparison between IGS ionospheric products and PPP-AR based ionospheric observables corrected for receiver biases, resulted in a mean of differences of −39 cm and 51 cm standard deviation. The results are consistent with the accuracy of the IGS ionospheric products, 2–8 TECU, considering that 1 TECU is ~16 cm in L1. In another analysis, a comparison of ionospheric delays from 5 pairs of short baselines GNSS stations found an agreement of 0.001 m in mean differences with 22 cm standard deviation after receiver biases were corrected. Therefore, the proposed solution is promising and could produce high quality (1–2 TECU) slant ionospheric delays. This product can be used in a large variety of modeling approaches, since ionospheric delays after correction are unbiased. These results indicate that the proposed strategy is promising, and could benefit applications that require accuracy of 1–2 TECU (~16–32 cm in L1).  相似文献   
54.
The ionospheric effect remains one of the main factors limiting the accuracy of Global Navigation Satellite Systems (GNSS) including Galileo. For single frequency users, this contribution to the error budget will be mitigated by an algorithm based on the NeQuick global ionospheric model. This quick-run empirical model provides flexible solutions for combining ionospheric information obtained from various sources, from GNSS to ionosondes and topside sounders. Hence it constitutes an interesting simulation tool not only serving Galileo needs for mitigation of the ionospheric effect but also widening the use of new data.  相似文献   
55.
The stability of GPS time and frequency transfer is limited by the fact that GPS signals travel through the ionosphere. In high precision geodetic time transfer (i.e. based on precise modeling of code and carrier phase GPS data), the so-called ionosphere-free combination of the code and carrier phase measurements made on the two frequencies is used to remove the first-order ionospheric effect. In this paper, we investigate the impact of residual second- and third-order ionospheric effects on geodetic time transfer solutions i.e. remote atomic clock comparisons based on GPS measurements, using the ATOMIUM software developed at the Royal Observatory of Belgium (ROB). The impact of third-order ionospheric effects was shown to be negligible, while for second-order effects, the tests performed on different time links and at different epochs show a small impact of the order of some picoseconds, on a quiet day, and up to more than 10 picoseconds in case of high ionospheric activity. The geomagnetic storm of the 30th October 2003 is used to illustrate how space weather products are relevant to understand perturbations in geodetic time and frequency transfer.  相似文献   
56.
GNSS (Global Navigation Satellite Systems)-based attitude determination is an important field of study, since it is a valuable technique for the orientation estimation of remote sensing platforms. To achieve highly accurate angular estimates, the precise GNSS carrier phase observables must be employed. However, in order to take full advantage of the high precision, the unknown integer ambiguities of the carrier phase observables need to be resolved. This contribution presents a GNSS carrier phase-based attitude determination method that determines the integer ambiguities and attitude in an integral manner, thereby fully exploiting the known body geometry of the multi-antennae configuration. It is shown that this integral approach aids the ambiguity resolution process tremendously and strongly improves the capacity of fixing the correct set of integer ambiguities. In this contribution, the challenging scenario of single-epoch, single-frequency attitude determination is addressed. This guarantees a total independence from carrier phase slips and losses of lock, and it also does not require any a priori motion model for the platform. The method presented is a multivariate constrained version of the popular LAMBDA method and it is tested on data collected during an airborne remote sensing campaign.  相似文献   
57.
Based on resolutions of the United Nations General Assembly, Regional Centres for Space Science and Technology Education were established in India, Morocco, Nigeria, Brazil and Mexico. Simultaneously, education curricula were developed for the core disciplines of remote sensing, satellite communications, satellite meteorology, and space and atmospheric science. This paper provides a brief summary on the status of the operation of the regional centres with a view to use them as information centres of the International Committee on Global Navigation Satellite Systems (ICG), and draws attention to their educational activities.  相似文献   
58.
微波辐射计接收机的线性度是表征输入噪声温度与输出电压间的关系,采用双位开关衰减器法实现等功率电平测量微波辐射计接收机的线性度。该方法是在已知输出温度的低温噪声源之后,接有一个双位开关衰减器,这个双位开关衰减器只有二个档位,要么是直通,要么是通过一个固定的小衰减量。多次交替开关,可使达到接收机的输入量每次的增加是个相同量,这样就能完成接收机线性度的准确测量。简述测量原理、方法和测量不确定度分析。  相似文献   
59.
The Geodetic Observatory Pecný (GOP) routinely estimates near real-time zenith total delays (ZTD) from GPS permanent stations for assimilation in numerical weather prediction (NWP) models more than 12 years. Besides European regional, global and GPS and GLONASS solutions, we have recently developed real-time estimates aimed at supporting NWP nowcasting or severe weather event monitoring. While all previous solutions are based on data batch processing in a network mode, the real-time solution exploits real-time global orbits and clocks from the International GNSS Service (IGS) and Precise Point Positioning (PPP) processing strategy. New application G-Nut/Tefnut has been developed and real-time ZTDs have been continuously processed in the nine-month demonstration campaign (February–October, 2013) for selected 36 European and global stations. Resulting ZTDs can be characterized by mean standard deviations of 6–10 mm, but still remaining large biases up to 20 mm due to missing precise models in the software. These results fulfilled threshold requirements for the operational NWP nowcasting (i.e. 30 mm in ZTD). Since remaining ZTD biases can be effectively eliminated using the bias-reduction procedure prior to the assimilation, results are approaching the target requirements in terms of relative accuracy (i.e. 6 mm in ZTD). Real-time strategy and software are under the development and we foresee further improvements in reducing biases and in optimizing the accuracy within required timeliness. The real-time products from the International GNSS Service were found accurate and stable for supporting PPP-based tropospheric estimates for the NWP nowcasting.  相似文献   
60.
Tropospheric delay is one of the major sources of error in VLBI (Very Long Baseline Interferometry) analysis. The principal component of this error can be accurately computed through reliable surface pressure data —hydrostatic delay— yet there is also a small but volatile component —wet delay— which is difficult to be modelled a priori. In VLBI analysis, troposphere delay is typically modelled in the theoretical delays using Zenith Hydrostatic Delays (ZHD) and a dry mapping function. Zenith Wet Delay (ZWD) is not modelled but estimated in the analysis process. This work studies inter alia the impact of including external GNSS estimates to model a priori ZWD in VLBI analysis, as well as other models of a priori ZWD.In a first stage, two different sources of GNSS troposphere products are compared to VLBI troposphere estimates in a period of 5 years. The solution with the best agreement to VLBI results is injected in the VLBI analysis as a priori ZWD value and is compared to other options to model a priori ZWD. The dataset used for this empirical analysis consists of the six CONT campaigns.It has been found that modelling a priori ZWD has no significant impact either on baseline length and coordinates repeatabilities. Nevertheless, modelling a priori ZWD can change the magnitude of the estimated coordinates a few millimeters in the up component with respect to the non-modelling approach. In addition, the influence of a priori ZWD on Earth Orientation Parameters (EOP) and troposphere estimates —Zenith Total Delays (ZTD) and gradients—has also been analysed, resulting in a small but significant impact on both geodetic products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号