首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   75篇
  国内免费   50篇
航空   164篇
航天技术   128篇
综合类   6篇
航天   150篇
  2024年   6篇
  2023年   11篇
  2022年   18篇
  2021年   26篇
  2020年   22篇
  2019年   22篇
  2018年   20篇
  2017年   15篇
  2016年   20篇
  2015年   18篇
  2014年   37篇
  2013年   22篇
  2012年   16篇
  2011年   28篇
  2010年   18篇
  2009年   18篇
  2008年   24篇
  2007年   17篇
  2006年   17篇
  2005年   18篇
  2004年   9篇
  2003年   14篇
  2002年   5篇
  2001年   4篇
  2000年   7篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1992年   2篇
  1990年   1篇
  1981年   1篇
排序方式: 共有448条查询结果,搜索用时 187 毫秒
91.
简述了采用3DSTUDIO软件后,给飞机机动飞行科目试飞结果分析带来的重要变化。并从实际应用的角度论述了3DSTUDIO辅助提高飞机设计完善性的原因;展望了将3DSTUDIO软件,应用于辅助完善飞机设计的前景。  相似文献   
92.
A rotor CFD solver is developed for simulating the aerodynamic interaction phenomenon among rotor, wing and fuselage of a tilt rotor aircraft in its helicopter mode. The unsteady Navier–Stokes equations are discretized in inertial frame and embedded grid system is adopted for describing the relative motion among blades and nacelle/wing/fuselage. A combination of multi-layer embedded grid and ‘‘extended hole fringe" technique is complemented in original grid system to tackle grid assembly difficulties arising from the narrow space among different aerodynamic components, and to improve the interpolation precision by decreasing the cell volume discrepancy among different grid blocks. An overall donor cell searching and automatic hole cutting technique is used for grid assembly, and the solution processes are speeded up by introduction of Open MP parallel method. Based on this solver, flow fields and aerodynamics of a tilt rotor aircraft in hover are simulated with several rotor collective angles, and the corresponding states of an isolated rotor and rotor/wing/fuselage model are also computed to obtain reference solution.Aerodynamic interference influences among the rotor and wing/fuselage/nacelle are analyzed,and some meaningful conclusions are drawn.  相似文献   
93.
针对在空间作匀速直线运动的目标,建立了机载单站无源定位的三维模型。给出了其中的预处理过程和系统状态方程,并采用UKF算法进行滤波处理以提高定位精度。仿真结果表明,模型和算法有效。与扩展卡尔曼滤波(EKF)相比,在初始误差较大时UKF也能快速收敛。  相似文献   
94.
李明  关正西 《上海航天》2007,24(4):34-37,61
将扩展有限元法(XFEM)用于研究固体火箭发动机(SRM)壳体/绝热层的脱粘。将层隙型和紧贴型脱粘等效为双材料界面裂纹,建立了XFEM的双材料界面裂纹分析模型,并给出了其中核心算法——应变矩阵的求解,通过相互作用积分求出应力强度因子和能量释放率。算例结果表明,XFEM的计算结果与理论值的差异较小,可用于有效求解脱粘问题。  相似文献   
95.
In the last decades there have been an increasing interest in improving the accuracy of spacecraft navigation and trajectory data. In the course of this plan some anomalies have been found that cannot, in principle, be explained in the context of the most accurate orbital models including all known effects from classical dynamics and general relativity. Of particular interest for its puzzling nature, and the lack of any accepted explanation for the moment, is the flyby anomaly discovered in some spacecraft flybys of the Earth over the course of twenty years. This anomaly manifest itself as the impossibility of matching the pre and post-encounter Doppler tracking and ranging data within a single orbit but, on the contrary, a difference of a few mm/s in the asymptotic velocities is required to perform the fitting.Nevertheless, no dedicated missions have been carried out to elucidate the origin of this phenomenon with the objective either of revising our understanding of gravity or to improve the accuracy of spacecraft Doppler tracking by revealing a conventional origin.With the occasion of the Juno mission arrival at Jupiter and the close flybys of this planet, that are currently been performed, we have developed an orbital model suited to the time window close to the perijove. This model shows that an anomalous acceleration of a few mm/s2 is also present in this case. The chance for overlooked conventional or possible unconventional explanations is discussed.  相似文献   
96.
Among the configurations of superconducting magnet structures proposed for protecting manned spaceships or manned deep space bases from ionizing radiation, toroidal ones are the most appealing for the efficient use of the magnetic field, being most of the incoming particle directions perpendicular to the induction lines of the field. The parameters of the toroid configuration essentially depend from the shape and volume of the habitat to be protected and the level of protection to be guaranteed. Two options are considered: (1) the magnetic system forming with the habitat a unique complex (compact toroid) to be launched as one piece; (2) the magnetic system to be launched separately from the habitat and assembled around it in space (large toroid).  相似文献   
97.
A design technique for a near optimal, Earth–Moon transfer trajectory using continuous variable low thrust is proposed. For the Earth–Moon transfer trajectory, analytical and numerical methods are combined to formulate the trajectory optimization problem. The basic concept of the proposed technique is to utilize analytically optimized solutions when the spacecraft is flying near a central body where the transfer trajectories are nearly circular shaped, and to use a numerical optimization method to match the spacecraft’s states to establish a final near optimal trajectory. The plasma thruster is considered as the main propulsion system which is currently being developed for crewed/cargo missions for interplanetary flight. The gravitational effects of the 3rd body and geopotential effects are included during the trajectory optimization process. With the proposed design technique, Earth–Moon transfer trajectory is successfully designed with the plasma thruster having a thrust direction sequence of “fixed-varied-fixed” and a thrust acceleration sequence of “constant-variable-constant”. As this strategy has the characteristics of a lesser computational load, little sensitivity to initial conditions, and obtaining solutions quickly, this method can be utilized in the initial scoping studies for mission design and analysis. Additionally, derived near optimal trajectory solution can be used as for initial trajectory solution for further detailed optimization problem. The demonstrated results will give various insights into future lunar cargo trajectories using plasma thrusters with continuous variable low thrust, establishing approximate costs as well as trajectory characteristics.  相似文献   
98.
TEGA, one of several instruments on board of the Phoenix Lander, performed differential scanning calorimetry and evolved gas analysis of soil samples and ice, collected from the surface and subsurface at a northern landing site on Mars. TEGA is a combination of a high temperature furnace and a mass spectrometer (MS) that was used to analyze samples delivered to the instrument via a robotic arm. The samples were heated at a programmed ramp rate up to 1000 °C. The power required for heating can be carefully and continuously monitored (scanning calorimetry). The evolved gases generated during the process can be analyzed with the evolved gas analyzer (a magnetic sector mass spectrometer) in order to determine the composition of gases released as a function of temperature. Our laboratory has developed a sample characterization method using a pyrolyzer integrated to a quadrupole mass spectrometer to support the interpretations of TEGA data. Here we examine the evolved gas properties of six types of hyperarid soils from the Pampas de La Joya in southern Peru (a possible analog to Mars), to which we have added with microorganisms (Salmonella typhimurium, Micrococcus luteus, and Candida albicans) in order to investigate the effect of the soil matrix on the TEGA response. Between 20 and 40 mg of soil, with or without ∼5 mg of lyophilized microorganism biomass (dry weight), were placed in the pyrolyzer and heated from room temperature to 1200 °C in 1 h at a heating rate of 20 °C/min. The volatiles released were transferred to a MS using helium as a carrier gas. The quadrupole MS was ran in scan mode from 10 to 200 m/z. In addition, ∼20 mg of each microorganism without a soil matrix were analyzed. As expected, there were significant differences in the gases released from microorganism samples with or without a soil matrix, under similar heating conditions. Furthermore, samples from the most arid environments had significant differences compared with less arid soils. Organic carbon released in the form of CO2 (ion 44 m/z) from microorganisms evolved at temperatures of ∼326.0 ± 19.5 °C, showing characteristic patterns for each one. Others ions such as 41, 78 and 91 m/z were also found. Interestingly, during the thermal process, the release of CO2 increased and ions previously found disappeared, demonstrating a high-oxidant activity in the soil matrix when it was subjected to high temperature. Finally, samples of soil show CO2 evolved up to 650 °C consistent with thermal decomposition of carbonates. These results indicate that organics mixed with these hyperarid soils are oxidized to CO2. Our results suggest the existence of at least two types of oxidants in these soils, a thermolabile oxidant which is highly oxidative and other thermostable oxidant which has a minor oxidative activity and that survives the heat-treatment. Furthermore, we find that the interaction of biomass added to soil samples gives a different set of breakdown gases than organics resident in the soil. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown.  相似文献   
99.
The success of long-duration space missions depends on the ability of crewmembers and mission support specialists to be alert and maintain high levels of cognitive function while operating complex, technical equipment. We examined sleep, nocturnal melatonin levels and cognitive function of crewmembers and the sleep and cognitive function of mission controllers who participated in a high-fidelity 105-day simulated spaceflight mission at the Institute of Biomedical Problems (Moscow). Crewmembers were required to perform daily mission duties and work one 24-h extended duration work shift every sixth day. Mission controllers nominally worked 24-h extended duration shifts. Supplemental lighting was provided to crewmembers and mission controllers. Participants' sleep was estimated by wrist-actigraphy recordings. Overall, results show that crewmembers and mission controllers obtained inadequate sleep and exhibited impaired cognitive function, despite countermeasure use, while working extended duration shifts. Crewmembers averaged 7.04±0.92 h (mean±SD) and 6.94±1.08 h (mean±SD) in the two workdays prior to the extended duration shifts, 1.88±0.40 h (mean±SD) during the 24-h work shift, and then slept 10.18±0.96 h (mean±SD) the day after the night shift. Although supplemental light was provided, crewmembers’ average nocturnal melatonin levels remained elevated during extended 24-h work shifts. Naps and caffeine use were reported by crewmembers during ∼86% and 45% of extended night work shifts, respectively. Even with reported use of wake-promoting countermeasures, significant impairments in cognitive function were observed. Mission controllers slept 5.63±0.95 h (mean±SD) the night prior to their extended duration work shift. On an average, 89% of night shifts included naps with mission controllers sleeping an average of 3.4±1.0 h (mean±SD) during the 24-h extended duration work shift. Mission controllers also showed impaired cognitive function during extended duration work shifts.These findings indicate that extended duration work shifts present a significant challenge to crewmembers and mission support specialists during long-duration space mission operations. Future research is needed to evaluate the efficacy of alternative work schedules and the development and implementation of more effective countermeasures will be required to maintain high levels of performance.  相似文献   
100.
This paper presents an overview of the analysis performed on the lunar orbit and some of the possible contingencies for the European Student Moon Orbiter (ESMO). Originally scheduled for launch in 2014 –2015 as a piggyback payload, it was the only ESA planned mission to the Moon. By way of a weak stability boundary transfer, ESMO is inserted into an orbit around the Moon. Propellant use is at a premium, so the operational orbit is selected to be highly eccentric. In addition, an optimization is presented to achieve an orbit that is stable for 6 months without requiring orbit maintenance. A parameter study is undertaken to study the sensitivity of the lunar orbit insertion. A database of transfer solutions across 2014 and 2015 is used to study the relation between the robustness of weak capture and the planetary geometry at lunar arrival. A number of example recovery scenarios, where the orbit insertion maneuver partially or completely fails, are also considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号