首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   20篇
  国内免费   9篇
航空   41篇
航天技术   117篇
综合类   1篇
航天   99篇
  2024年   2篇
  2023年   9篇
  2022年   5篇
  2021年   14篇
  2020年   7篇
  2019年   13篇
  2018年   9篇
  2017年   8篇
  2016年   10篇
  2015年   7篇
  2014年   20篇
  2013年   15篇
  2012年   8篇
  2011年   12篇
  2010年   10篇
  2009年   15篇
  2008年   15篇
  2007年   11篇
  2006年   1篇
  2005年   8篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
排序方式: 共有258条查询结果,搜索用时 62 毫秒
251.
Traditional station-keeping for Earth observation satellites with chemical thrusters generally involves maneuvers every couple months that are able to change significantly the semi-major axis and the inclination. These strategies do not scale down to very low thrust level (a few hundreds of μN) electrical thrusters. This paper presents both in-plane and out-of-plane strategies that spread corrections over very long arcs and discretize them to tiny maneuvers every couple orbits, taking into account mission-constraints on maneuvers locations. These strategies scale up to medium thrust strategies, filling the gap between propulsion technologies. The out-of-plane strategy although features a new no-deadband property and controls the full orbital momentum. All strategies allow control very close to the reference (a few hundreds meters in osculating parameters) and very low cost.  相似文献   
252.
The satellite motion on the reference orbit (RO) with less energy consumption has always persuaded researchers to design optimal control systems. The nonlinear nature and time-varying equations of motion make this quest more challenging. The present study proposes a novel control system for satellite motion on the RO by considering a comprehensive model of its dynamics in orbit and a Nonlinear Model Predictive Controller (NMPC). The NMPC calculates the sub-optimal control inputs of satellite motion reference on the elliptic orbit by minimizing a convex cost function at each stage. Moreover, all weighting parameters of the cost function are optimized by the Genetic Algorithm (GA) to produce less perturbation and guarantee the best NMPC performance. Finally, the implemented NMPC has been compared to a Linear MPC (LMPC). The results show that not only can the NMPC resist against larger errors and perturbations, but it can also compensate for those errors by returning the satellite to its main orbit and maintaining it.  相似文献   
253.
In recent earth observing missions, agile satellites enable various imaging modes beyond the traditional along-track strip imaging. However, it requires maneuvering with boundary conditions of considerable angular velocity, i.e., spin-to-spin maneuvering. This paper proposes an attitude command generation method for spin-to-spin maneuvering that can provide feedforward commands for the attitude control loop. A general solution for arbitrary flight time is provided which steers a satellite to the given final attitude and angular velocity at the prescribed time. In addition, an alternative method is proposed that further improves the maneuvering speed, which is applicable to small-angle maneuvering cases. The proposed solutions are both closed-form which are more intuitive and easier to comprehend than numerical solutions. It also has a great advantage in computational efficiency, which could enable its use on-board in real time. Numerical examples demonstrate the performance of the proposed methods in a single maneuvering case as well as in a consecutive maneuvering case integrated with a realistic earth observing scenario.  相似文献   
254.
Modern techniques for planetary defense from comets and asteroids involve the deflection of the bolide via kinetic, gravitational, ablative, or radiative means. While potentially effective, none of these methods are capable of operating in a terminal interdiction mode wherethe threat is discovered with little time prior to impact. We present a practical and effective method for planetary defense which enables extremely short interdiction time scales, but can also operate within longer time scales and can be effective for extremely large threats. Called PI (“Pulverize It”), the method makes use of an array of hypervelocity penetrators which uses the kinetic energy of the asteroid or comet to disrupt it. In the terminal interdiction mode, the fragments of maximum 10 m diameter disperse laterally as they continue towards the Earth, and then enter the Earth’s atmosphere where they burn up as a series of airburst events which spatially and temporally de-correlate the energy of the original parent bolide for any arbitrary observer on the ground in the form of acoustical shockwaves and optical pulses. We show that terminal interdiction modes ranging from 2 minutes prior to impact for 20-meter class bolides (such as the Chelyabinsk asteroid), 1 day prior to impact for 100 m-class asteroids, 10 days prior to impact for Apophis-class asteroids (370 m), and even 60 days prior to impact for 1 km-class threats are all possible, though longer warning times are always preferred. Using only technologies readily available today, the PI method allows for a cost-effective and practical roadmap towards robust planetary defense capability.  相似文献   
255.
随着低轨(LEO)卫星数量的不断增加,利用LEO星座辅助增强GNSS导航性能已经成为一种新的趋势.针对低信噪比环境下B1C信号难以捕获的问题,提出了一种基于LEO辅助的B1C信号高灵敏快速捕获算法.首先对提升接收机捕获灵敏度进行了分析,对比了相干积分与非相干积分对于信号处理增益的影响,得出在低轨导航增强信号的辅助下采用增加相干积分时间的捕获算法对低信噪比条件下B1C信号的捕获更有效.然后提出了一种基于LEO辅助的B1C高灵敏快速捕获算法,从理论分析和实验仿真两方面,对比验证了在LEO辅助下可以显著提高B1C信号的捕获灵敏度,缩短捕获时间,提高捕获效率.  相似文献   
256.
《中国航空学报》2023,36(5):223-238
CubeSats have attracted more research interest recently due to their lower cost and shorter production time. A promising technology for CubeSat application is atmosphere-breathing electric propulsion, which can capture the atmospheric particles as propulsion propellant to maintain long-term mission at very low Earth orbit. This paper designs an atmosphere-breathing electric propulsion system for a 3 U CubeSat, which consists of an intake device and an electric thruster based on the inductively coupled plasma. The capture performance of intake device is optimized considering both particles capture efficiency and compression ratio. The plasma source is also analyzed by experiment and simulation. Then, the thrust performance is also estimated when taking into account the intake performance. The results show that it is feasible to use atmosphere-breathing electric propulsion technology for CubeSats to compensate for aerodynamic drag at lower Earth orbit.  相似文献   
257.
Land use and cover change (LUCC) is one of the key variables dominating land–atmosphere interactions and strongly affects the Earth’s eco-environments by altering surface properties. Numerous studies have been carried out to assess the impact of LUCC. However, the Earth is a large, open and complex system characterized by complex interactions between its eco-environments and drivers. This study aimed to summarize previous studies of the impact of LUCC on the Earth’s eco-environments and discuss the progress and limitations in suggesting future directions. Previous studies have confirmed that LUCC has a wide range of impacts on the Earth’s eco-environments, which are represented by the alternation of climate (temperature, precipitation, wind, and humidity), hydrology (soil moisture, runoff, and evapotranspiration), ecology and environmental (air, water, and soil) pollution. Physically, the impacts were mainly attributed to the disturbance of the surface radiation budget and matter conservation caused by LUCC. Although great achievements have been made, several challenges remain because of the unavoidable uncertainties in data sources and methodologies and the complexity of eco-environmental evolution. Therefore, data assimilation, physical-based investigations, contribution isolation, and full-process analysis are required to overcome these challenges in future research. The results of this study helped to capture the impact of LUCC and its physical mechanisms, which provide useful clues for future research and support the relative land use management for sustainable development.  相似文献   
258.
Due to the influence of various errors, the orbital uncertainty propagation of artificial celestial objects while orbit prediction is required, especially in some applications such as conjunction analysis. In the orbital error propagation of artificial celestial objects in low Earth orbits (LEOs), atmospheric density uncertainty is one of the important factors that require special attention. In this paper, on the basis of considering the uncertainties of position and velocity, the atmospheric density uncertainty is also taken into account to further investigate the orbital error propagation of artificial celestial objects in LEOs. Artificial intelligence algorithms are introduced, the MC Dropout neural network and the heteroscedastic loss function are used to realize the correction of the empirical atmospheric density model, as well as to provide the quantification of model uncertainty and input uncertainty for the corrected atmospheric densities. It is shown that the neural network we built achieves good results in atmospheric density correction, and the uncertainty quantization obtained from the neural network is also reasonable. Moreover, using the Gaussian mixture model - unscented transform (GMM-UT) method, the atmospheric density uncertainty is taken into account in the orbital uncertainty propagation, by adding a sampled random term to the corrected atmospheric density when calculating atmospheric density. The feasibility of the GMM-UT method considering atmospheric density uncertainty is proved by the further comparison of abundant sampling points and GMM-UT results (with and without considering atmospheric density uncertainty).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号