首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1827篇
  免费   380篇
  国内免费   515篇
航空   841篇
航天技术   623篇
综合类   168篇
航天   1090篇
  2024年   17篇
  2023年   58篇
  2022年   80篇
  2021年   119篇
  2020年   76篇
  2019年   127篇
  2018年   142篇
  2017年   116篇
  2016年   127篇
  2015年   137篇
  2014年   219篇
  2013年   142篇
  2012年   182篇
  2011年   133篇
  2010年   134篇
  2009年   123篇
  2008年   107篇
  2007年   102篇
  2006年   78篇
  2005年   71篇
  2004年   51篇
  2003年   58篇
  2002年   48篇
  2001年   33篇
  2000年   34篇
  1999年   29篇
  1998年   30篇
  1997年   20篇
  1996年   18篇
  1995年   13篇
  1994年   16篇
  1993年   12篇
  1992年   9篇
  1991年   9篇
  1990年   14篇
  1989年   13篇
  1988年   7篇
  1987年   1篇
  1986年   1篇
  1985年   16篇
排序方式: 共有2722条查询结果,搜索用时 95 毫秒
21.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
22.
杨文将  刘宇 《飞行力学》2006,24(2):47-50
针对磁悬浮助推水平起飞运载器这种新型发射概念,采用概念性分析方法,研究地面发射参数对可重复使用运载器性能的影响规律。结果表明,助推发射水平起飞运载器在降低初始推重比、推进剂和结构质量等方面具有优势,最后得出地面发射参数的一组优化值。  相似文献   
23.
In 1998, Comet 9P/Tempel 1 was chosen as the target of the Deep Impact mission (A’Hearn, M. F., Belton, M. J. S., and Delamere, A., Space Sci. Rev., 2005) even though very little was known about its physical properties. Efforts were immediately begun to improve this situation by the Deep Impact Science Team leading to the founding of a worldwide observing campaign (Meech et al., Space Sci. Rev., 2005a). This campaign has already produced a great deal of information on the global properties of the comet’s nucleus (summarized in Table I) that is vital to the planning and the assessment of the chances of success at the impact and encounter. Since the mission was begun the successful encounters of the Deep Space 1 spacecraft at Comet 19P/Borrelly and the Stardust spacecraft at Comet 81P/Wild 2 have occurred yielding new information on the state of the nuclei of these two comets. This information, together with earlier results on the nucleus of comet 1P/Halley from the European Space Agency’s Giotto, the Soviet Vega mission, and various ground-based observational and theoretical studies, is used as a basis for conjectures on the morphological, geological, mechanical, and compositional properties of the surface and subsurface that Deep Impact may find at 9P/Tempel 1. We adopt the following working values (circa December 2004) for the nucleus parameters of prime importance to Deep Impact as follows: mean effective radius = 3.25± 0.2 km, shape – irregular triaxial ellipsoid with a/b = 3.2± 0.4 and overall dimensions of ∼14.4 × 4.4 × 4.4 km, principal axis rotation with period = 41.85± 0.1 hr, pole directions (RA, Dec, J2000) = 46± 10, 73± 10 deg (Pole 1) or 287± 14, 16.5± 10 deg (Pole 2) (the two poles are photometrically, but not geometrically, equivalent), Kron-Cousins (V-R) color = 0.56± 0.02, V-band geometric albedo = 0.04± 0.01, R-band geometric albedo = 0.05± 0.01, R-band H(1,1,0) = 14.441± 0.067, and mass ∼7×1013 kg assuming a bulk density of 500 kg m−3. As these are working values, {i.e.}, based on preliminary analyses, it is expected that adjustments to their values may be made before encounter as improved estimates become available through further analysis of the large database being made available by the Deep Impact observing campaign. Given the parameters listed above the impact will occur in an environment where the local gravity is estimated at 0.027–0.04 cm s−2 and the escape velocity between 1.4 and 2 m s−1. For both of the rotation poles found here, the Deep Impact spacecraft on approach to encounter will find the rotation axis close to the plane of the sky (aspect angles 82.2 and 69.7 deg. for pole 1 and 2, respectively). However, until the rotation period estimate is substantially improved, it will remain uncertain whether the impactor will collide with the broadside or the ends of the nucleus.  相似文献   
24.
本文应用现代控制理论研究了航天飞行器三维最优再入轨道和与轨道参数密切相关的气动加热过程。文中选择飞行器迎角和倾斜角作为控制变量,以飞行器气动加热率和飞行过载沿轨道积分最小作为优化性能指标,按极大原理导出最优再入轨道有约束控制的非线性两点边值问题。采用了数值优化方法——共轭梯度法求解有升力飞行器的最优再入轨道及其热过程。文中以允许误差法讨论了权系数和罚函数的选取方法;对不同速度范围研究了不同的加热模型;按热平衡方程与优化轨道同步迭代的方法求得了算例数值结果。算例的数值结果与文献[13]的量值是一致的。  相似文献   
25.
飞机平尾偏角引动量的自动检测   总被引:1,自引:0,他引:1  
根据飞机纵向操纵系统工作原理和纵向平飞操纵原理,推导了平衡速度与平尾偏角的关系式,分析了操纵杆力、平衡速度、平尾偏角的相互关系及平衡速度的调整原理。结合平尾偏角检测现状,提出了一种利用机械臂自动检测飞机平尾偏角的方法,成功研制了平尾偏角自动检测仪,并用于平衡速度的调整。反复检测表明:该检测仪可取代目前广泛使用的人工检测方法,提高了飞机维修保障能力,具有较大的推广前景。  相似文献   
26.
本文介绍了一种基于微控制器控制,以GPS为主要导航手段,且基于多传感器信息融合的自主移动机器人导航系统的软硬件设计思想及实现方法。重点讨论了基于栅格法的导航算法在微控制器系统中的实现。最后给出了该导航系统在比较典型的环境中实现导航与避障的实验结果。  相似文献   
27.
飞船、宇航探测器、航天飞机等复杂外形航天器给气体动力学,包括稀薄气体动力学提出了新的要求。本文简要介绍了为计算过渡领域中气动力与热而发展的基于位置元概念的DSMC方法的通用算法。该方法解决了计算物面通量量的技术难点并已用于模拟圆球、飞船、类航天飞机的绕流。正在进行的航天实践,如麦哲伦飞船对金星的探测、行星大气中的气动制动、伽利略飞船的木星之行、尾屏蔽在太空中获得高真空的实验等等提出了新的气动力问题,稀薄气体动力学和DSMC方法是有力的工具。  相似文献   
28.
本文根据航天飞机防热瓦缝隙流动的特点,从二维定常不可压缩层流的 N-S方程出发,提出了一个简化流动模型,即缝隙的二维流动可近似当作两个准一维沟槽流动的线性迭加,由此给出了缝隙中的热流率与压力、压力梯度和缝隙宽度的变化规律,并利用现有的实验结果作了验证。  相似文献   
29.
确定投影空间维数和建立投影空间模型是计算机视觉领域中形态图计算时一个十分重要的基本问题,本文根据态图计算时特征视图拓扑结构等价的特点,指出轴测投影下的投影空间是二维空间,透视投影空间为三维空间,并分别了投影空间模型的建立方法,从而使复杂物体形科计算是简单可行。  相似文献   
30.
Banach空间中微分包含解的存在性   总被引:2,自引:0,他引:2  
本文在无穷维Banach空产是中讨论微分包含解的存在性,先给出了几个普通微分包含的比较定理,讨论了近似解与解的关系,然后得到了Banach空间中微分包含解的存在性定理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号