全文获取类型
收费全文 | 268篇 |
免费 | 30篇 |
国内免费 | 32篇 |
专业分类
航空 | 144篇 |
航天技术 | 50篇 |
综合类 | 53篇 |
航天 | 83篇 |
出版年
2024年 | 1篇 |
2023年 | 13篇 |
2022年 | 9篇 |
2021年 | 12篇 |
2020年 | 10篇 |
2019年 | 17篇 |
2018年 | 8篇 |
2017年 | 8篇 |
2016年 | 11篇 |
2015年 | 10篇 |
2014年 | 18篇 |
2013年 | 11篇 |
2012年 | 11篇 |
2011年 | 15篇 |
2010年 | 14篇 |
2009年 | 14篇 |
2008年 | 15篇 |
2007年 | 18篇 |
2006年 | 22篇 |
2005年 | 18篇 |
2004年 | 14篇 |
2003年 | 11篇 |
2002年 | 6篇 |
2001年 | 11篇 |
2000年 | 6篇 |
1999年 | 5篇 |
1998年 | 4篇 |
1997年 | 5篇 |
1996年 | 2篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1991年 | 3篇 |
1989年 | 2篇 |
1988年 | 1篇 |
排序方式: 共有330条查询结果,搜索用时 13 毫秒
321.
基于小波的航空发动机叶片孔探损伤检测 总被引:1,自引:0,他引:1
发动机孔探技术是航空发动机内部故障检测的重要技术,而叶片损伤则是发动机内部的一种常见损伤.针对发动机叶片损伤的特点,通过对损伤模型的分析,应用SUSAN(Smallest Univalue Segment Assimilating Nucleus)边缘检测算法对叶片损伤进行定位,应用小波变换对孔探图像进行分解,得到不同位置处的不同频率分量.并根据损伤模型的分析通过已定位的损伤位置来确定损伤法线方向的频谱分量,计算出损伤处除直流分量之外的其它频率分量的频谱能量,从而依据损伤频谱能量检测并估计发动机叶片的损伤.实验结果表明,应用此方法可以定量检测并估计航空发动机叶片表面损伤情况,为检测并估计发动机叶片损伤提供了理论和实践依据. 相似文献
322.
卫星具有覆盖范围广、抗灾害性强等特点,随着卫星研制与发射成本的不断降低,推动卫星与地面移动通信网络、物联网(IoT)、云计算中心深度融合,构建天地一体化网络和应用架构,已成为航天发展的重要方向。随着地面多用户、大数据量的接入,亟须开展卫星在轨数据处理技术相关研究,提升卫星的在轨服务能力和质量。本文提出了对卫星计算资源进行整合,构建天基边缘计算系统,并提出了天基边缘计算的3种资源管理策略和4种平台部署协同模式。此外,对天基边缘计算的优势和还需解决的关键技术进行了分析,并搭建了天基边缘计算原型系统,对不同计算卸载策略性能进行了分析。 相似文献
323.
324.
本文根据在飞行试验中对EOMS光电经纬仪的使用经验,结合电视跟踪中目标的图像特征,分析了EOMS光电经纬仪中的电视跟踪技术,其重点是电视跟踪算法。 相似文献
325.
326.
襟翼边缘噪声的端板抑制技术试验研究 总被引:1,自引:0,他引:1
在声学风洞中开展试验研究,采用传声器阵列以及远场传声器线阵,结合波束形成、声压级积分、频谱分析等方法,验证了基于襟翼端板的襟翼边缘噪声抑制技术,研究了三种不同外形尺寸的襟翼端板对襟翼边缘噪声的影响.研究表明,襟翼边缘产生的噪声集中在(5~16)kHz频率范围内,针对襟翼边缘噪声的端板在该频率范围内有着显著的降噪效果,且对干净构型下的噪声影响很小,具有较好的工程应用前景.对比不同外形的端板的降噪性能,表明襟翼端板降噪量与襟翼偏角以及端板外形相关;现有的三种端板中,尺寸越大则降噪效果越明显. 相似文献
327.
328.
针对光学导航中存在的通过星体(球体)图像部分边缘点拟合椭圆参数计算轨道参数产生中间误差的问题,提出利用边缘点映射轨道参数的直接投影模型,避免拟合椭圆参数的方法。在小孔成像模型基础上,建立了边缘点与轨道参数的直接投影数学模型,对其映射过程进行了理论推导,利用列文伯格-马夸尔特迭代算法进行求解轨道参数。用实际探测器以及镜头参数进行数值仿真验证,结果表明:该方法在相同边缘点的条件下,轨道精度可以达到5‰。与传统方法相比,这种方法避免了椭圆的拟合过程,减少了引入中间误差过程。 相似文献
329.
相比于传统的长基线和超短基线等导航方式,水下单信标导航具有布放简单的优点,但其导航精度有待进一步提高。为此,提出了单信标导航的航路规划方案,通过泰勒级数展开推导了水平位置精度因子的表达式,并分析了导航点和声信标的相对几何位置关系对导航精度的影响,最终提出了航路规划方案。在此基础上,还提出了自主水下航行器(autonomous underwater vehicle,AUV)从其他位置接近最优航路的方法,包括两部分:一是建立以时延为观测量的滤波模型,利用滤波算法实时获取AUV的位置估计值;二是基于可观测度分析结果对最优航路接近过程的轨迹进行了设计。二者的结合使得AUV高效率且高精度地逼近最优航路。仿真证明了采用所提出的航路规划方案和最优航路接近方法可以提高导航精度,航路规划方案使得AUV位置估计的均方根误差近似为2 m。 相似文献
330.