首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2270篇
  免费   627篇
  国内免费   317篇
航空   2344篇
航天技术   236篇
综合类   316篇
航天   318篇
  2024年   17篇
  2023年   78篇
  2022年   99篇
  2021年   89篇
  2020年   90篇
  2019年   101篇
  2018年   71篇
  2017年   89篇
  2016年   89篇
  2015年   96篇
  2014年   108篇
  2013年   101篇
  2012年   119篇
  2011年   120篇
  2010年   102篇
  2009年   112篇
  2008年   124篇
  2007年   97篇
  2006年   76篇
  2005年   95篇
  2004年   94篇
  2003年   72篇
  2002年   98篇
  2001年   88篇
  2000年   87篇
  1999年   72篇
  1998年   65篇
  1997年   82篇
  1996年   101篇
  1995年   69篇
  1994年   63篇
  1993年   77篇
  1992年   54篇
  1991年   76篇
  1990年   75篇
  1989年   88篇
  1988年   56篇
  1987年   5篇
  1986年   7篇
  1985年   6篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
排序方式: 共有3214条查询结果,搜索用时 46 毫秒
951.
梁勇  陈迎春  赵鲲  孙静  卢翔宇  赵昱 《航空学报》2019,40(8):122932-122932
当前中国民用飞机高速发展,噪声排放问题受到广泛关注。在飞机起降阶段,飞行高度较低且处于机场附近,其噪声直接影响到机场地面周围环境。该阶段内起落架噪声占比较大,成为研究的重点。此外,起落架在收放过程中,除自身脱落涡产生的噪声外,当起落架舱门开启时,舱体空腔内产生自持性振荡噪声,与起落架噪声一起形成更为复杂的起落架+舱体耦合噪声,直接影响到整个着陆系统噪声水平,因此研究起落架与舱体耦合噪声产生机理和抑制措施显得尤为必要。以简化的起落架及其舱体为研究对象,提出一种低马赫数(0.2Ma/0.25Ma)条件下,利用前缘锯齿扰流单元对起落架/舱体耦合噪声进行抑制的方法,并在0.55 m×0.4 m航空声学风洞进行试验验证。首先,从起落架及其舱体耦合噪声产生原因进行分析,分别明确起落架和舱体在耦合噪声各个频段的贡献作用。随后,在舱体空腔前缘安装锯齿扰流单元,以改变自由来流状态,验证降噪措施;同时采用参数化研究方法,研究锯齿扰流单元不同偏角对降噪效果的影响。最后,将起落架模型安装于舱体空腔内,分析锯齿扰流单元对耦合噪声的抑制能力。研究结果表明,锯齿形扰流单元对舱体腔体噪声与起落架/舱体耦合噪声具有明显降低作用,在本试验条件下,30°安装角最佳。预期成果可以应用于起落架/舱体耦合降噪。  相似文献   
952.
自动编码器在流场降阶中的应用   总被引:1,自引:0,他引:1  
自动编码器作为一种压缩算法,在数据降维和去噪等方面有着广泛实践,有条件作为一种降阶方法在流场识别与数据处理方面得到应用。文章中以圆柱绕流为例,首先对圆柱后速度场建立了编码模型,用来对原始数据进行降维和特征提取,之后将编码后的数据与流场特征量相关联,建立了由流场编码回归圆柱表面压力系数的神经网络,探索了降维后数据的应用。结果表明,自动编码得到的结果能够承载原始速度场的主要信息,解码后速度场与原速度场测试均方根误差小于0.02,压力回归测试均方根误差可小于0.1。说明自动编码器能够作为一种流场的特征提取和降阶方法,在未来得到更广泛的应用。  相似文献   
953.
首先介绍了一种实现电弧与铣削组合的加工方法及装备。其次,为验证电弧加工在航空部件生产方面的能力及其对后续精加工工艺的友好性,利用自研的高速电弧放电与机械铣削组合加工专用机床,以具有复杂曲面特征的三元流叶轮样件为例进行五轴电弧铣削与机械铣削组合加工试验研究。结果表明,合理安排电弧加工工序,可以在实现材料高效去除的同时,取得较优的表面质量,电弧铣削中最大材料去除率达14500mm^3/min,小能量电弧加工完成后的样件表面粗糙度R_a为12.5μm,硬度为69.4HRB,较基体硬度未有明显变化,可以很好地适应切削加工要求。后续机械铣削加工过程中,刀具磨损小、加工状态稳定,最终获得粗糙度R_a1.2μm的加工表面,且由于切削余量小,有效抑制了加工变形,样件加工结果达到设计要求,充分展现了该组合加工工艺应用于具有复杂形貌特征的航空发动机零部件制造方面的可行性。  相似文献   
954.
王肖  谢文忠  阳未  张德平 《推进技术》2020,41(2):324-333
本文通过对典型二元超声速进气道进行数值仿真,研究了内收缩段中泄流位置对进气道自起动性能及抗反压能力的影响规律和影响机制。研究结果表明:泄流腔改善进气道自起动性能和抗反压能力的内在机制不尽相同,泄流腔位置决定了进气道在临界不起动状态下的泄流量、临界不起动模式和临界反压状态下的泄流量,其中临界不起动状态下的泄流量和临界不起动模式共同影响进气道的自起动性能,而进气道的抗反压能力则主要由临界反压状态下的泄流量决定。在本研究范围内,当Lc=0.31时,进气道自起动性能最好,而当Lc=0.15时,临界压比和总压恢复系数最高。  相似文献   
955.
金属/水反应冲压发动机内流场数值模拟   总被引:1,自引:3,他引:1       下载免费PDF全文
基于燃气发生器式金属/水反应冲压发动机的构成形式,建立了发动机补燃室内流场两相反应计算模型,并在该模型下对给定的贫氧推进剂配方,及某模型发动机进行了模拟,得出了不同水喷射雾化角、铝颗粒燃烧模型、铝颗粒初始直径下反应物和产物组分、温度等发动机参数的变化趋势。结果表明,水喷射雾化角大有利于水滴蒸发及其与燃气的掺混;两种不同的铝颗粒燃烧模型结果差别不大;铝颗粒初始直径的大小对发动机性能有显著影响。  相似文献   
956.
为考察包覆电磁激活板的翼型体绕流特性,采用数值模拟的方法研究了低雷诺数下电磁力对翼型体流场结构和绕流过程的影响,探讨了不同迎角和不同电磁力大小对翼型体尾流涡街形态和流体边界层结构的影响。计算结果表明,作用于翼型体表面的电磁力可以明显改变流体边界层的结构,抑制边界层分离,并有效提高翼型体的升力。  相似文献   
957.
针对一种带放气槽的定几何二元倒置"X"型混压式超音速进气道进行了风洞吹风实验。结果表明:随着来流马赫数的增加,进气道总压恢复系数不断减小,流量系数却先增加,在设计点达到最大值后减小;当攻角变化时,两侧进气道变化各异,在小攻角α≤60时,随着攻角的增加,迎背风两侧进气道的总压恢复系数均有所下降,但背风侧进气道总压恢复系数高于迎风侧进气道,在流量系数方面,背风侧进气道先增加后减小,而迎风侧进气道一直保持缓慢下降,但两侧总的流量保持变化不大,在大攻角(α=60-90)状态下,背风侧进气道总压恢复系数和流量系数均下降剧烈,而迎风侧进气道总压恢复系数下降但流量系数却有所上升;同时,通过与不带放气槽进气道的速度特性以及反压特性对比发现,放气槽的存在不但增加了进气道的稳定工作范围,而且对进气道在高马赫数下性能的提高也大有裨益。本文为倒置"X"型进气道的设计、改进提供了实验依据。  相似文献   
958.
回顾了跨声速风扇/压气机转子气动负荷的研究历程,并对基准风扇转子和两个方案转子进行了三维流场分析。通过对195个研究方案的对比研究,目前阶段数值模拟的结果中风扇转子气动负荷系数达到0.65。在来流条件相同的情况下:合理组织激波结构可以大幅提高叶尖气动负荷;叶根大转角设计是提高根区气动负荷的可行途径;静子跨声速来流是高气动负荷跨声速风扇/压气机的必然结果。  相似文献   
959.
基于振动的功率流理论和一般概率摄动法,研究了多源激励浮筏隔振系统频域内振动传递路径的功率流传递概率的度量问题,提出了频域内振动传递路径系统的功率流传递度的新概念和方法,在考虑工程中的不确定因素以后,在频域内清晰地描述了振动传递路径系统的功率流传递度.   相似文献   
960.
无隔道超声速进气道/前机身一体化计算与试验   总被引:8,自引:0,他引:8  
李博  梁德旺 《航空学报》2009,30(9):1597-1604
针对某飞机设计了机身两侧进气的无隔道超声速进气道(Bump进气道),进行了进气道/前机身一体化的三维内外流流场数值模拟研究,得到了进气道的流场图谱,比较了唇口方案对附面层排移效果的影响,并对比分析了带隔道的斜板式进气道与无隔道进气道的流场特征及附面层排除特点的差异。根据设计和计算结果,进行了斜板式及Bump进气道模型的风洞试验,通过试验对比,选择了较优的Bump进气道方案,并将不同模型比例和风洞、高空条件下的计算结果与试验数据进行了比较,发现在计算条件、模型比例都与风洞吹风条件一致的情况下,数值模拟的结果与试验数据吻合最好。研究结果表明,Bump进气道气动性能优于斜板式进气道,采用“双斜切”唇口方案设计的Bump进气道能进一步增加排除附面层的效果,按高空条件计算得到的进气道总压恢复系数比按地面风洞条件计算值高0.02~0.03。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号