首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1690篇
  免费   518篇
  国内免费   253篇
航空   1360篇
航天技术   451篇
综合类   205篇
航天   445篇
  2024年   18篇
  2023年   67篇
  2022年   83篇
  2021年   91篇
  2020年   97篇
  2019年   101篇
  2018年   82篇
  2017年   91篇
  2016年   83篇
  2015年   77篇
  2014年   75篇
  2013年   90篇
  2012年   112篇
  2011年   114篇
  2010年   108篇
  2009年   115篇
  2008年   111篇
  2007年   89篇
  2006年   84篇
  2005年   70篇
  2004年   65篇
  2003年   58篇
  2002年   56篇
  2001年   60篇
  2000年   39篇
  1999年   42篇
  1998年   34篇
  1997年   47篇
  1996年   43篇
  1995年   42篇
  1994年   34篇
  1993年   41篇
  1992年   33篇
  1991年   22篇
  1990年   26篇
  1989年   43篇
  1988年   5篇
  1987年   8篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
排序方式: 共有2461条查询结果,搜索用时 937 毫秒
391.
飞行器的等离子体隐身应用   总被引:3,自引:0,他引:3  
分析了等离子体雷达隐身的机理 ,并对太空和大气层内飞行器利用等离子体进行雷达隐身的相关技术进行了探讨  相似文献   
392.
分别建立了新型低能耗N2-NO系统的单电极尖端放电和介质阻挡放电非热等离子体NO还原实验系统,通过实验研究了电极极问电压V和尖端距离lg以及Al2O3,CaO,MgO,玻璃等不同介质阻挡对活性N原子产生及NO还原率的影响规律。结果表明,NO还原率随尖端距离lg的增大而先增后减,随极间电压Vm和气体停留时间t的增大而增大,尖端距离lg是决定电极之间的电场强度Eg和气流停留时间t的关键几何变量。利用活性N原子的产生条件解释了放电外轮廓直径及电场强度随尖端距离lg变化的消长规律。不同阻挡介质所形成的气体放电的电场强度不同,提供给活性粒子的能量也不同,从而对NO还原效果具有不同的影响。单电极尖端放电NO还原特性的研究结果对介质阻挡放电NO还原有指导作用。  相似文献   
393.
为了消除航空飞行器表面、电力传输电缆、风力涡轮机叶片等因低温结冰而带来的不利影响,同时为了增强航空飞行器表面吸波涂层的自清洁能力,将经过硅烷偶联剂改性的纳米二氧化硅(n-SiO2)和微米二氧化硅(m-SiO2)填料按照质量比6∶1共混后与聚氨酯(PU)基体复合制得多级次改性SiO2/PU超疏水涂层。研究表明,m-SiO2在PU基体中较好的分散状态提升了涂层的稳定性,有效消除了因n-SiO2团聚而出现的涂层开裂现象。n-SiO2和m-SiO2填料在涂层的表面共同构筑起致密的多级次微凸起疏水结构,可以截留更多的空气来增大水滴的气–液接触面积。多级次改性SiO2/PU超疏水涂层的水接触角可达158.56°±1.08°,并且具有良好的自清洁能力和耐磨性。此外,多级次改性SiO2/PU超疏水涂层优秀的透波性能使其不会对吸波涂层的性能产生不利影响,表明制备的多级次改性SiO2/PU...  相似文献   
394.
为提升高超声速飞行器的升阻比,一种重要设计思想是让飞行器各组件的激波、膨胀波产生有利的相互作用,获得增升、减阻的效果。基于上述设计思想的高升阻比构型通常根据无黏二维/轴对称流场的激波-膨胀波关系设计。由于三维效应与空气黏性的影响,其实际性能相比理想设计性能往往存在较明显的退化。针对上述问题,提出流场波系引导的优化设计方法。不同于以气动性能指标为目标的传统优化方法,该方法以设计流场的波系形态为目标引导几何参数的优化方向。设计方法在一种主翼、上翼产生有利干扰的三维消波翼的设计中得到应用验证。通过将优化构型的流场、气动性能与根据二维无黏方法设计的初始构型对比,证明了优化设计方法的有效性。通过与菱形翼对比,验证了消波翼在设计工况下相比于常规构型的升阻比优势。  相似文献   
395.
低温加注系统是运载火箭发射场地面支持设备的重要组成部分,包括低温介质的储存、运输、供给、控制以及安全等内容。由于低温推进剂本身存在低温沸腾、易挥发的特性,其加注过程十分复杂,为满足新一代运载火箭推进剂精准的加注要求,需要实时准确监测加注过程中贮箱内的液位高度。本文针对火箭地面加注过程的液位信号数据,对其三角波电压和线性波电压的特征进行分析、提取,基于BP(Back Propagation,反向传播)神经网络算法完成对不同加注状态的识别检测,并应用于传感器节数判别,优化了液位计算算法,降低了节数人为干预需求,提高了液位测量准确性。经实验测试验证,该方法可有效识别低温加注状态,识别准确率达到90%以上,用于液位信号处理中可显著提升液位高度计算的准确性。  相似文献   
396.
为研究螺旋爆轰胞格结构,选取预混气C2H2+2.5O2+85%Ar、C2H2+2.5O2+70%Ar与C2H2+5N2O在光滑管中进行爆轰实验,使用烟膜记录管道侧壁与端面胞格结构。编写MATLAB程序处理烟膜记录,比较侧壁横波间距、端面胞格直径平均值,以及相邻端面胞格中心点距离平均值与标准差。其中,侧壁横波间距明显大于管壁附近端面胞格直径平均值。另外,相较于稳定气,不稳定气近管壁与近管轴区域的端面胞格直径差异更大,不同压力下预混气C2H2+5N2O近管壁与近管轴区域的端面胞格直径差异分别为47.91 %、59.64 %、40.42 % 与37.21 %。为进一步探索爆轰波内部结构,使用CH4+2O2在5 mm、15 mm与25 mm宽度的环形管进行实验,对比侧壁及端面烟膜结果可观测到内部螺旋横波旋转方式。相对环管宽度而言,初始压力是胞格尺寸的主要影响参数,而整体上外侧壁胞格尺寸稍大于内侧壁胞格尺寸。  相似文献   
397.
小型感性耦合射频等离子体中和器的实验研究   总被引:3,自引:3,他引:0       下载免费PDF全文
贺建武  马隆飞  薛森文  章楚  段俐  康琦 《推进技术》2018,39(7):1673-1680
为了研究适用于百瓦级电推力器的离子束流中和技术,基于电子鞘层模型、射频等离子体最优放电技术和通过插入探针实现快速点火的方法,设计了一套小型感性耦合射频等离子体中和器(RF plasma neutralizer,RPN)。实验研究了RPN中和器的稳定工作条件和电子引出特性,实现了RPN中和器稳定工作和电子有效引出。实验结果表明:电子引出特性主要取决于发射孔附近阳极斑的形成与否,而阳极斑的形成又主要受结构设计、工质流量和偏置电压等运行条件的影响;通过对RPN运行条件的优化试验,获得了55~150m A可调电子束流范围和较高的工质利用系数(3.9~10.5),满足离子束流中和需求;另外,实验中还观察到了电子束流随工质流量或偏置电压的迟滞现象。  相似文献   
398.
为了研究当量油气比对内燃波转子燃烧特性的影响规律,采用控制变量法,保持内燃波转子转速、混气填充速度不变,通过调节燃料喷射体积流量改变混气的当量油气比。在不同的当量油气比下开展内燃波转子燃烧特性试验。试验结果表明:当量油气比对于内燃波转子燃烧过程影响很大,随着当量油气比的增加,内燃波转子获得的燃烧压力增益增大,在内燃波转子转速为900r/min、混气填充速度为6.741m/s、当量油气比为1.442时,6个工作循环内平均燃烧压力增益达到246.29%,火焰平均传播速度随当量油气比呈类似正态分布,在化学恰当比附近达到最大10.8m/s。当量油气比小于1时,两组工况下火焰锋面呈向下倾斜状传播,当量油气比大于1时,两组工况下火焰锋面呈向上倾斜状传播。   相似文献   
399.
为探究宽工况范围下螺旋槽再生冷却的传热特性,基于微小通道内低温工质的相变传热模型,采用一维传热计算方法,对5 kN级液氧甲烷变推力发动机开展了螺旋槽再生冷却传热特性研究。结果表明:本文所采用的传热计算模型可用于传热预估,与试验结果相比,冷却剂温升误差为4.3%,压降误差为1.1%,喉部处外壁温误差为-11%,在工程计算可接受范围内;相比于直槽,螺旋槽再生冷却能有效降低燃气侧壁温,同时,在宽范围变推力条件下,实际功率水平越低,冷却剂温升、压降越小,喉部燃气侧壁温越低,但“传热恶化区”内的壁温最大值反而越高,当发动机推力由额定工况的75%调整至20%时,燃气侧壁温的最大值由1 351 K增大至1 399 K;综合考虑壁面温度及冷却剂的压力损失,本文对冷却通道开展优化设计,对比四种冷却通道方案的传热性能,其中,方案4为最优方案,20%额定功率水平工况时,冷却剂温升为491 K,压降为0.34 MPa,燃气侧壁温最大值也仅为1 297 K,较初始设计方案降低了102 K,远低于材料的极限温度。  相似文献   
400.
针对星载SAR的特点,简述了散射波干扰的干扰原理,并针对其工程实现中的几个关键问题进行了分析。最后针对典型星载SAR进行了干扰验证试验,给出了试验结果,证明了该样式的有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号