首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2462篇
  免费   327篇
  国内免费   256篇
航空   1143篇
航天技术   617篇
综合类   150篇
航天   1135篇
  2024年   24篇
  2023年   67篇
  2022年   99篇
  2021年   100篇
  2020年   99篇
  2019年   121篇
  2018年   80篇
  2017年   88篇
  2016年   107篇
  2015年   114篇
  2014年   136篇
  2013年   129篇
  2012年   121篇
  2011年   128篇
  2010年   121篇
  2009年   134篇
  2008年   140篇
  2007年   107篇
  2006年   131篇
  2005年   95篇
  2004年   103篇
  2003年   110篇
  2002年   71篇
  2001年   95篇
  2000年   67篇
  1999年   49篇
  1998年   67篇
  1997年   57篇
  1996年   48篇
  1995年   49篇
  1994年   39篇
  1993年   24篇
  1992年   38篇
  1991年   22篇
  1990年   22篇
  1989年   23篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
排序方式: 共有3045条查询结果,搜索用时 15 毫秒
131.
本文论述一种低成本常压下速率微机械陀螺,它采用了兼容制CMOS镍电铸装配成型工艺,陀螺的驱动模式和检测模式的谐振频率的匹配相互接近后,增加了角速率的分辨率,两种模式采用了对称悬挂和静电频率音又方式,而且在模式匹配运行过程中两种模式的不合理机械耦合,通过与陀螺的挠曲完全断开,减小了耦合度.降低机械耦合得到一个稳定的零速率输出偏置,即提供一个极好的偏置稳定度。装配陀螺镍材料结构层厚度18μm,电容间隙2.5μm,结果是纵横比大于7,检测电容0.5pF以上.测出陀螺谐振频率,驱动是4.09Hz,检测是4.33Hz,然后再与电压小于12V音叉匹配.陀螺混合联结一个CMOS客性接口电路,混合系统工作受外围电路控制,它们组成一个角度速率传感器.陀螺按驱动模式震荡,振动幅值大于10μm。速率陀螺等效噪声是0.095(°/s)/HZ1/2短期偏置稳定度大于0.1°/s.在测量范围±100°/s内,该陀螺公称标度因子是17.7mV/(°/s),满刻度时非线性度仅为0.12%。现在的陀螺测量频宽设为30Hz,根据使用要求,频宽可以超过100Hz,检测模式的质量因子可以通过提高真空度加以改善,在一个10Hz窄的响应频宽中,质量因子大约就是一个等效速率噪声,它小于0.05(°/s)/Hz1/2。  相似文献   
132.
结合实验,对一种带亚声速预燃室和流向涡掺混器的超声速燃烧模型燃烧室,在其进口马赫数为2.5的来流条件下,进行了冷态流场的数值研究.计算与实验得到的燃烧室沿程压力分布相当一致,计算与实验得到的激波结构也基本吻合.计算结果表明:首先,在马赫数2.5的来流条件下,亚燃预燃室易于达到启动状态;其次,流向涡掺混器增强超/亚声速流之间的掺混的效果明显,但其掺混深度尚有限;最后,流向涡掺混的超燃室掺混段有着复杂的激波膨胀波波系,波涡干涉和激波附面层干涉结构.  相似文献   
133.
采用SSTk-ω二方程湍流模型,通过解耦求解雷诺平均N-S方程实现对巡飞器无舵偏情况下湍流流场的数值模拟。对巡飞器低雷诺数绕流流场进行了计算,分析了其在无舵偏情况下气动特性随迎角、侧滑角的变化情况。仿真结果表明,巡飞器采用充气式机翼后,具有很好的失速性能与较好的大迎角稳定性。  相似文献   
134.
方昕昕  沈赤兵  康忠涛 《推进技术》2016,37(10):1893-1899
为了研究针栓式喷注器无旋锥形液膜表面波不稳定特性,采用高速摄影获得了不同压降下表面波波动图像,测量了液膜表面波破碎点波长、振幅以及破碎长度等特征信息。利用试验结果修正了无旋锥形液膜色散方程中的参数C和ln(η_bη_0),并求解了色散方程。研究了喷注压降对液膜破碎长度、破碎时间以及破碎点波长的影响。结果表明:随着喷注压降的增加,液膜破碎长度和破碎时间均降低,并且降低趋势越来越缓,液膜表面波发展的非线性增强,理论值与试验值的偏差由3.9%增大到29.2%;液膜破碎位置处扰动波长随喷注压降的增加而降低,并且试验值比理论值偏大50%左右,无旋锥形液膜破碎模型可定性分析针栓式喷注器液膜表面波不稳定性。  相似文献   
135.
采用三维雷诺平均N-S方程和标准k-ε湍流模型,对不同间隙高度超声速膨胀器的流场和性能进行了数值研究,结果表明:间隙高度显著影响三维流道内的局部流动特性和超声速膨胀器的整体性能,随间隙高度增加,气流最高相对马赫数降低,高速区范围逐步缩小;泄漏涡增强,尺度变大,横向和径向运动明显,泄漏损失增加,但激波及激波附面层相互作用的损失降低;超声速膨胀器的膨胀比先增大后减小,等熵绝热效率持续降低.下端壁、吸力面附近低能流体之间以及与壁面的摩擦损失和间隙泄漏损失是有间隙超声速膨胀器三维流道内损失的主要来源,超声速膨胀器的间隙高度宜在0.9%h0~1.5%h0之间选取.   相似文献   
136.
张立丰  姚卫星  邹君 《航空学报》2015,36(3):834-839
随着航空科技的发展,追求飞机任务的多样化和低生命周期成本成为一大趋势,其中模块化飞机设计对于未来飞机设计的多用途以及经济性具有实际意义。针对模块化飞机结构优化设计的特点,提出了等效多工况(EMCO)法,将模块化结构优化问题分解为通用模块的多工况优化问题和各专用模块的独立优化问题。通用模块等效为承受多工况载荷的结构,并按多工况优化方法进行优化设计,使通用模块质量最轻。各型号的专用模块在此基础上分别进行独立的优化设计。通用模块和专用模块交替优化,直至目标函数值收敛。最后,分别通过模块化桁架结构和机翼结构优化实例展示了该方法的运用效果,并与单独优化结果和加权单目标优化结果进行了对比。结果表明该方法降低了计算规模,收敛效果较好。  相似文献   
137.
崔乃刚  黄盘兴  路菲  黄荣  韦常柱 《航空学报》2015,36(6):1915-1923
针对运载器大气层内的最优轨迹快速规划问题,提出一种将求解最优控制问题的间接法与直接法相结合的混合优化方法。首先,基于最优控制问题的一阶必要条件,将运载器大气层内的三维最优上升问题转化为Hamiltonian两点边值问题;然后,采用直接法中能以较少的节点获得较高求解精度的Gauss伪谱法进行求解,提高算法的求解效率;最后,采用真空解析解初值及密度同伦技术,解决初值猜测与算法收敛困难的问题。仿真结果表明,混合优化算法能够准确、快速地对运载器大气层内的最优上升轨迹问题进行求解,并在计算精度与效率上均优于间接法,可应用于运载器的轨迹在线规划与闭环制导。  相似文献   
138.
以飞机作动器产品为研究对象,通过条目化需求分析,将产品设计过程进行逐级分解。利用AMESim、AN-SYS系列软件等仿真工具,建立从部件到产品的各级仿真模型,并开展仿真分析工作,通过对仿真分析过程和结果的分析,探索了基于模型的系统工程方法的工作流程,总结了飞机液压作动器基于模型的系统工程方法的应用基础。  相似文献   
139.
袁杰  王文山 《航空发动机》2017,43(3):98-102
先进飞机及其发动机的需求是复合材料发展的强大推动力。基于复合材料的特点以及在航空中的应用情况,提出了发动机作动系统对复合材料的需求。根据商用发动机作动系统的定义与范围,详细论述了该系统未来发展方向对复合材料的应用需求。通过对比分析复合材料在国内外发动机作动系统中的应用现状,提出了钛基复合材料、Si C复合材料、变形记忆合金复合材料、压电功能复合材料等先进复合材料的应用发展方向,为中国商用发动机作动技术的发展提供相关建议。  相似文献   
140.
韩龙  许进升  封涛  周长省 《推进技术》2017,38(8):1885-1892
为了描述NEPE(Nitrate Ester Plasticized Polyether Propellant)复合固体推进剂的非线性粘弹性力学行为,基于粘弹性脱湿准则及所建立的粘弹性时间-损伤等效原理,将颗粒脱湿所造成的材料损伤以折算时间的形式引入至线性粘弹性本构关系中,从而建立起可考虑细观颗粒脱湿影响的NEPE复合固体推进剂非线性粘弹性本构模型。通过定制配方NEPE材料在不同温度(-50, -35, -20, 0, 20, 35及50°C)、不同应变水平(5%, 10%, 15%, 20%, 25%以及30%)的应力松弛试验及单轴拉伸试验,结合反演技术,获取了本构模型参数。最后利用Matlab软件平台实现了本构模型对于NEPE单轴拉伸力学行为的数值预测,数值计算结果与试验曲线较为吻合,预测数值与试验值差值在15%以内,说明所建本构模型能够较好地描述NEPE推进剂在一定应变率范围内(3.333×10-4~0.1s-1)的粘弹性力学行为,为预测具有复杂细观结构的复合固体推进剂的宏观力学行为提供了一条较为简单便利的实现方式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号