首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   600篇
  免费   272篇
  国内免费   31篇
航空   609篇
航天技术   49篇
综合类   90篇
航天   155篇
  2024年   6篇
  2023年   22篇
  2022年   32篇
  2021年   44篇
  2020年   35篇
  2019年   34篇
  2018年   48篇
  2017年   27篇
  2016年   35篇
  2015年   39篇
  2014年   30篇
  2013年   46篇
  2012年   38篇
  2011年   32篇
  2010年   35篇
  2009年   30篇
  2008年   39篇
  2007年   44篇
  2006年   26篇
  2005年   27篇
  2004年   16篇
  2003年   20篇
  2002年   9篇
  2001年   20篇
  2000年   11篇
  1999年   17篇
  1998年   21篇
  1997年   10篇
  1996年   9篇
  1995年   8篇
  1994年   16篇
  1993年   10篇
  1992年   13篇
  1991年   11篇
  1990年   7篇
  1989年   9篇
  1988年   6篇
  1987年   7篇
  1986年   7篇
  1985年   4篇
  1982年   2篇
  1980年   1篇
排序方式: 共有903条查询结果,搜索用时 781 毫秒
81.
在可调振幅的正弦波声场作用下,以甲烷-氢混合气预混钝体火焰为实验对象,通过火焰传递函数表征整个燃烧系统的燃烧不稳定性特征,借助CH基自发荧光图像描述火焰锋面运动及演化过程,研究了在声激励下不同当量比(0.8、1.0、1.2)下氢气体积分数的变化(0、10%、20%)对火焰燃烧不稳定的影响。结果表明: 对于当量比为0.8和1.0的预混火焰,氢气的加入使得火焰传递函数幅值增大,热释放波动变大,整体火焰的不稳定性增强;对于当量比为1.2的富燃预混火焰,随着氢气体积分数的增加,火焰传递函数幅值先减小后增加,火焰稳定性较强。   相似文献   
82.
对不同工况下CH4/air旋流火焰的放热率在时间上的热声振荡现象和空间的三维形态转变两方面进行了研究。在燃烧形态转变方面,由于旋流火焰的复杂流场分布特性,采用基于化学自发光的三维计算层析技术(3D-CTC),测量了雷诺数从5 000到20 000的三个工况下旋流燃烧的CH*发光三维火焰结构。以此表征放热率的三维分布,实现对旋流火焰放热空间形态的测量。该诊断方法通过对旋流火焰发光在8个视角下的二维成像,结合层析重建算法得到其三维CH*分布信息。为验证重建保真度,将重建后结果二维可视化与高速摄影下的二维时均结果进行对比,结果表明重建误差在5%以内。研究中,分析了不同雷诺数下放热率的空间变化规律,结果显示所有实验工况下放热率的垂直于喷嘴方向的变化程度比沿喷嘴轴向的要剧烈;而随着雷诺数增加,最大的放热区表现出了明显的向后推进趋势。在旋流燃烧的热声振荡方面,利用CH*的二维高速摄影,对旋流燃烧的放热率不稳定性进行研究,发现放热率的振荡频率随着雷诺数的增大逐渐增加。   相似文献   
83.
基于稳态火焰面(SLFM)和交互式非稳态欧拉颗粒火焰面(EPFM)模型对Sydney大学CH4/H2钝体稳定湍流扩散火焰行了数值研究,采用修正的雷诺应力模型(RSM),同时对两种不同规模的甲烷详细化学反应动力学机理进行研究,比较了燃烧模型和反应机理对湍流火焰结构、活性自由基以及氮氧化物预测精度的影响,与实验数据对比结果表明:两种反应机理得到的温度场和主要组分分布基本相同;SLFM模型能对速度场和标量场的分布进行较为准确预测,采用EPFM模型修正后,部分区域OH预测结果更加靠近实验结果;采用EPFM模型对SLFM模型耦合GRI-Mech 211的计算结果修正后,NO量级降低近2倍,预测精度明显改善,与实验结果实现较好的符合,验证了化学反应动力学机理以及非稳态效应对氮氧化物预测精度的影响。  相似文献   
84.
杨波  洪延姬  刘毅  徐庆尧  张鹏  沈双晏 《推进技术》2015,36(10):1516-1521
为解决化石燃料燃烧带来的问题,需要对燃料的基础燃烧特性进行深入研究。为此通过数值计算研究了初始压强50~101k Pa,初始温度298~353K,当量比0.6~1.5异辛烷的预混层流火焰结构特性,分析了初始压强、初始温度、当量比对火焰厚度、反应区厚度、厚度比的影响。数值计算结果表明:火焰厚度、反应区厚度、厚度比会随着初始压强和初始温度的升高而减小,随当量比的增加先减小后增大;火焰厚度、反应区厚度、厚度比分别在当量比1.1,0.9,1.3时获得最小值;层流燃烧速度与H+OH的最大浓度有密切关系,都随初始温度的增加而增加,随初始压强的增加而减小。通过敏感性分析,发现H主要通过R3,R24,R97,R162,R163,R179生成,通过R1,R12,R14消耗;OH主要通过R1与R14生成,通过R3,R12,R16,R29,R95,R97消耗。  相似文献   
85.
郑东  钟北京 《航空动力学报》2017,32(10):2364-2370
设计并搭建了适用于测量高温、高压条件下层流火焰传播速度的定容燃烧弹实验系统。详细介绍了定容燃烧弹实验系统的主要子系统的构成和功能,并阐述实验数据处理方法。测量初始温度为400K、压力为0.1MPa和0.3MPa,C7燃料(甲苯、甲基环己烷、正庚烷)/空气层流火焰传播速度,并与现有文献结果进行了对比。结果表明:该定容燃烧弹实验系统具有较高的可靠性,不仅能够准确测量较高初始温度、不同初始压力条件下燃料/空气的层流火焰传播速度,而且能够拓宽测量火焰传播速度当量比的范围。   相似文献   
86.
凹腔对一体化支板火焰稳定器燃烧性能的影响   总被引:1,自引:1,他引:1  
在来流温度为780~850℃、来流马赫数为0.16及油气比为0.002~0.006的条件下,试验研究了凹腔对喷油/稳定一体化支板火焰稳定器燃烧效率及熄火性能的影响,并结合数值模拟进行辅助分析。结果表明:在不同油气比条件下,带凹腔的一体化支板火焰稳定器均能实现稳定高效燃烧;不带凹腔的一体化支板火焰稳定器燃烧效率始终低于带凹腔的一体化支板火焰稳定器,随着油气比的增加,两者燃烧效率差距逐渐缩小;带凹腔的一体化支板火焰稳定器较不带凹腔的一体化支板火焰稳定器有更好的熄火性能;凹腔结构促进了燃油雾化与蒸发,从而提高一体化支板火焰稳定器的燃烧性能。   相似文献   
87.
为了研究进口温度对分层旋流火焰燃烧不稳定性的影响,实验在单头部燃烧室上测量了不同进口温度下的动态压力,并采用理论分析了进口温度对压力振荡的影响。实验结果显示:该燃烧室出现的燃烧不稳定性呈现的是Helmholtz模态,并且随着进口温度从530K增加至650K时,压力脉动主频增加,幅值减小。分析表明:进口温度的增加会增强燃油的雾化和蒸发,进而加强其与空气的掺混均匀性,减小了当量比脉动,从而抑制了燃烧不稳定性,压力振荡幅值减小。   相似文献   
88.
周瑜  乐嘉陵  黄渊 《推进技术》2018,39(7):1576-1589
为深入了解真实航空发动机内燃烧流场,采用动态亚网格模型结合单步快速化学反应(FC)、火焰面(FLM)及反应进度变量(FPV)等三种燃烧模型对径向两级反向旋流燃烧室单头部构型进行了大涡模拟。为避免模型简化误差,对燃烧室包括全部气膜冷却孔在内的精细结构进行了完全仿真。在已达到统计定常状态的冷态流场基础上首先模拟了燃料喷注和掺混过程,约2.6ms后燃料到达真实的点火位置,随后采用FPV模型在半径3mm的球形区域数值模拟了点火,展示了在主燃孔横向射流作用下初始火焰沿化学恰当比混合分数等值线传播并充满整个火焰筒的发展过程,结果显示火焰到达燃烧室出口的耗时约为6~7ms。不同模型算法预测的平均温度场与CARS测量结果作了对比,LES-FPV,RANS-FPV,LES-FLM以及参考文献中RANS-FLM计算平均误差分别为3.47%,4.17%,7.76%和11.22%,表明LES改进了模拟精度,且FPV模型显著优于FLM模型。RANS-FPV预测的出口存在严重热斑,导致其给出的出口温度分布因子(OTDF)及最大径向温度分布因子(RTDF)值分别达到0.593和0.313;LES-FPV结果均匀性最好,其预测值分别为0.284和0.193。  相似文献   
89.
数据采集系统动态特性的辨识和评价,是其总体性能评价中至关重要的一个目标。本文通过选取几个相互比较独立的指标来总体描述数据采集系统的动态特性,然后通过几个特殊的模型化方法将其动态特性分别以动态有效位数、传递函数、阶跃响应曲线和幅频特性、相频特性的方式给出,从而解决了数据采集系统动态特性的总体评价问题。  相似文献   
90.
针对热电偶温升法在燃烧室部件点/熄火试验中存在的阻塞气流、响应速度慢等缺点,开展了基于火焰图像的燃烧室点/熄火判断技术研究。该技术通过火焰观测系统实时获取点/熄火试验时的火焰图像以判定燃烧室燃烧状况,进而获得燃烧室点/熄火特性,弥补了现有燃烧室点/熄火试验测试技术的缺陷。此外,该项技术还可推广应用于航空发动机整机试验及其他相关领域试验,对准确判断燃烧室点/熄火状况具有较大的参考价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号