首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   883篇
  免费   319篇
  国内免费   138篇
航空   1010篇
航天技术   84篇
综合类   196篇
航天   50篇
  2024年   9篇
  2023年   33篇
  2022年   58篇
  2021年   42篇
  2020年   47篇
  2019年   52篇
  2018年   55篇
  2017年   45篇
  2016年   53篇
  2015年   58篇
  2014年   61篇
  2013年   65篇
  2012年   48篇
  2011年   49篇
  2010年   40篇
  2009年   48篇
  2008年   35篇
  2007年   28篇
  2006年   21篇
  2005年   20篇
  2004年   23篇
  2003年   25篇
  2002年   22篇
  2001年   22篇
  2000年   36篇
  1999年   25篇
  1998年   31篇
  1997年   33篇
  1996年   46篇
  1995年   25篇
  1994年   24篇
  1993年   77篇
  1992年   29篇
  1991年   15篇
  1990年   17篇
  1989年   11篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
排序方式: 共有1340条查询结果,搜索用时 406 毫秒
651.
为了研究高超声速流激波边界层干扰特性, 选取HIFiRE-2 (The Hypersonic International Flight Research Experimentation 2)项目的高超声速流道为研究对象,采用k-棕SST 模型在无燃油工况下模拟计算地面试验过程,所得计算结果 与试验结果接近。在此基础上,分析激波边界层干扰过程、流动分离现象及入口马赫数对气动热影响。结果表明:随着入口马赫数增 大,激波角变小,激波强度提高,在尾喷管中激波反射次数减少;随着入口速度增大,边界层分离区范围变小,回流区的位置逐渐向 下游移动;加入气动耗散项后,流场的温度有一定升高,最大温升约为50 K。  相似文献   
652.
为获得高速风洞起动过程中的流场结构变化特性,采用数值模拟方法,使用二维轴对称模型对Φ 05 m高速风洞喷管段、试验段和扩压器段的流场特性进行了研究,控制方程为黏性可压缩非定常Navier-Stokes方程。对试验段马赫数为5和10两种状态下的流场建立过程进行了对比,结果表明,在风洞起动过程中,喷管内的附面层很厚,激波与附面层相互作用形成复杂的激波结构。试验段马赫数为5时在喷管段形成正激波,试验段马赫数为10时自喷管段形成激波串,起动压比低于按照正激波理论所计算得到的压比。激波串的起动速度较正激波慢,但稳定性较正激波好。起动过程中,气流发生过度欠膨胀,波前瞬时马赫数远大于喷管的设计马赫数。喷管出口的自由射流与收集器作用复杂,收集器溢流对试验段建立稳定的流动起关键作用。  相似文献   
653.
使用激波装配法时,初始激波是否准确将会对计算过程产生影响。为了确定初始激波的位置,提出了一种新的流场结构辨识算法。该算法以捕捉法计算得到的流场作为系统观测数据,根据密度、压力等参数从该数据中获取激波和接触间断等流动特征周围的网格节点作为离散点集。通过将该离散点集分割成若干子区域,在各子区域内进行分片拟合,最终将离散点集拟合成连续光滑的实体模型,并将此作为初始激波面。在二维方法的基础上,通过引入单位球模型成功将该辨识算法拓展到三维应用。结果表明,采用该方法获得的间断曲面(激波和接触间断)与捕捉法流场中的间断分布吻合较好,作为初始间断面用于装配法可快速得到收敛解。该方法解决了应用激波装配法时确定初始间断面的难题。此外,该方法还可用于网格自适应方法。选择不同流动参数,可以获得相应流场特征结构的空间曲面,在此曲面的基础上可进行网格局部加密或重剖分。该流场结构辨识算法用于网格自适应具有网格尺度自由设置的优势。  相似文献   
654.
鄢德堃  何国强  秦飞  石磊  王亚军 《推进技术》2018,39(7):1464-1471
为获得喷注规律对RBCC工作特性的影响,开展Ma_∞=3~6条件下火箭冲压组合发动机亚燃模态的全流道一体化数值分析,比较了不同来流条件下燃烧组织方式与进排气之间的匹配关系。研究发现,随着飞行马赫数的增加,隔离段压比提高,需相应调整燃料喷注位置和当量比,前移主释热区,最大化利用预燃激波串的匹配特性;在低马赫数下,则需将释热区转移至燃烧室后部扩张比较大区域,扩展流道后部压力范围,最大化利用热力壅塞的匹配特性,在不同马赫数下,通过分布式释热的方法实现宽裕较优工作。除此以外,关闭火箭也可以使得预燃激波串后移,改善进气道工作状态,发动机平均比冲性能提高10%以上,此时可以适当增加燃烧室前部喷油量,以保证低马赫数下整体的推力性能。  相似文献   
655.
为了研究畸变气流影响下烧蚀后的C-SiC复合材料隔离段性能,开展了马赫数2.5来流下模拟进气道喉道流场畸变的隔离段直连试验,同时对比研究了光滑不锈钢材质和不同目数砂纸隔离段性能,获得了C-SiC复合材料、不锈钢材质和砂纸隔离段的性能数据。结果表明:(1)烧蚀后的C-SiC隔离段的耐反压能力与光滑不锈钢材质隔离段相比下降了11.7%,总压恢复系数下降了6.96%,与40目砂纸隔离段相比,烧蚀后的C-SiC材料隔离段的耐反压能力和总压恢复系数更低;(2)烧蚀后的C-SiC隔离段性能大幅下降的实质在于表面不平度过大导致激波串前参数的改变,不平度越大,激波串前马赫数就越低,动量损失厚度也就越大,隔离段性能也相应下降更多。  相似文献   
656.
基于反问题设计方法的叶栅激波损失控制   总被引:2,自引:4,他引:2       下载免费PDF全文
刘昭威  吴虎  唐晓毅 《推进技术》2014,35(6):766-773
为了降低跨声速叶栅通道中的激波损失,提高叶栅出口的总压恢复系数,以二维粘性反问题设计方法理论为基础,发展了二维叶栅反问题设计方法,通过调整叶片表面沿轴向的载荷分布,在保持叶片总载荷不变的同时,达到降低叶栅槽道中的激波强度,减少激波损失的目的。为验证方法的正确性,首先运用德国宇航中心L030-4叶栅实验数据与计算结果进行对比,在此基础上对叶片载荷进行分析,并提出了一种叶片表面载荷分布参数化方法,运用该方法修改叶片表面载荷分布后通过反问题设计方法得到新的叶型。结果表明,通过修改叶片表面载荷分布,运用二维反问题设计方法得到的新叶型激波强度明显降低,叶栅出口总压恢复系数以及马赫数较原型均有增加,叶栅气动性能明显提高。  相似文献   
657.
面向跟踪的吸气式高超声速飞行器动力学建模   总被引:1,自引:0,他引:1  
根据吸气式高超声速目标的动力学特性,对传统动压加速度模型的局限性做了分析。在重力转弯模型框架中,基于超燃冲压发动机的推力产生机理以及高超声速流场的斜激波方程和普朗特梅叶方程,提出了描述目标切向加速度的推广模型和目标法向加速度的斜激波、非解析混合模型。随后,基于高超声速流场工程近似算法对吸气式高超声速目标的模式特征进行分析,并设计了均匀模型集。对攻角、滚转角以及发动机状态发生突变的高超声速机动目标跟踪问题进行了仿真研究。结果表明,新的模型集能够较好地适应目标突然加速和转弯机动,有效跟踪助推跳跃机动的吸气式高超声速目标。  相似文献   
658.
本文介绍了中国科学院高温气体动力学重点实验室在超高速高焓流动模拟技术和试验方法方面取得的研究进展.文章主要包括三部分研究内容:第一部分是关于发展先进的超高速试验模拟技术,包括爆轰驱动高焓激波风洞和爆轰驱动高焓膨胀管.高焓激波风洞产生的超高速气流速度的范围是3.5km/s~6.0km/s,高焓膨胀管能够模拟速度为6.5km/s~10km/s的超高速气流.第二部分介绍高焓激波风洞喷管流场诊断结果,用来检验喷管产生的超高速流场的流场品质及其与飞行条件的差异.第三部分是关于超高速流动的试验方法和数值技术研究,包括高焓流动中真实气体效应对飞行器俯仰力矩变化的影响;热化学反应流动中表面催化效应诱导的气动热变化规律;喷管流场的气流非平衡效应对试验结果可能产生的影响.  相似文献   
659.
本文为对当量比乙炔氧气混合气体中爆轰波与激波正面对撞产生稳定波系的实验和理论研究.实验主要以高速扫描摄影获取两波对撞的x-t纹影图,一维理论分析则基于三种热完全的组分求解两波对撞的稳定解并探寻它们的规律.实验发现透射波系包括一道激波和爆轰波,以及紧随爆轰波后的稀疏波区,这种波系情况与一维理论分析中CJ解一致.透射CJ爆轰与人射爆轰相比马赫数降低,而相对波前来流的传播速度有轻微提高,但在实验室坐标下其速度显著降低.透射波系受初始压强影响不大;初始温度提高使得爆轰波速度降低,而透射激波速度增加;对波系起实质影响作用的是入射激波强度,激波越强,则整个透射流场呈现偏向激波的趋势;理论分析还指出,稀疏波区的出现不可避免,当激波强度趋于声波时稀疏波区趋于消失,激波越强则疏波区趋于扩大.  相似文献   
660.
本文阐述了用于提高冲压发动机在高马赫数飞行条件下的推力,而发展的简单可靠的催化复合效应实验研究所需要高温燃气的产生方法;进行了理论分析与数值计算;成功研制了一座能产生高温空气与气态燃料燃烧产物的高温燃气激波风洞实验装置,并得到了压力为20大气压,温度为3200K,定常实验时间约为17ms且状态参数稳定的实验结果.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号