首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1185篇
  免费   222篇
  国内免费   99篇
航空   889篇
航天技术   177篇
综合类   189篇
航天   251篇
  2024年   6篇
  2023年   36篇
  2022年   44篇
  2021年   51篇
  2020年   46篇
  2019年   57篇
  2018年   43篇
  2017年   38篇
  2016年   33篇
  2015年   38篇
  2014年   64篇
  2013年   55篇
  2012年   73篇
  2011年   70篇
  2010年   68篇
  2009年   62篇
  2008年   73篇
  2007年   55篇
  2006年   56篇
  2005年   53篇
  2004年   54篇
  2003年   53篇
  2002年   31篇
  2001年   53篇
  2000年   25篇
  1999年   22篇
  1998年   22篇
  1997年   22篇
  1996年   17篇
  1995年   33篇
  1994年   22篇
  1993年   29篇
  1992年   25篇
  1991年   23篇
  1990年   18篇
  1989年   10篇
  1988年   7篇
  1987年   7篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
排序方式: 共有1506条查询结果,搜索用时 15 毫秒
361.
传统滑模观测器(SMO)无速度传感器控制方法在电机的运行速度出现较大变化时,对位置的估计会出现稳态误差。为了消除位置的估计误差,提出了一种带有反动电势修正的SMO无速度传感器控制方法。反电动势的修正律基于永磁同步电机(PMSM)的dq轴电流模型。即使电机运行在速度大幅波动的情况下,也能保持位置估计误差为零,且该方法计算增量较小,易于实现。将所提出的方法在1台1.5 kW的PMSM上进行了仿真和试验,结果验证了位置估计误差能有效地收敛至零。  相似文献   
362.
为了研究氢气对正己烷燃爆性能的影响,在定容燃烧室内实验测量了初始温度为353K,初始压力为100kPa,当量比0.7~1.7,掺氢比0%~80%时,正己烷-氢气-空气混合气的爆炸过程,得到了氢气对火焰传播规律、层流燃烧速率及爆炸压力的影响。研究结果表明,当量比从0.7增加到1.7,无拉伸火焰传播速率和层流燃烧速率呈先增大后减小的趋势,在当量比1.0附近达到最大;随着掺氢比的提高,混合气的燃烧速率明显增大,有利于提高燃料的燃烧效率,当量比为1.0时,掺氢比80%的混合气层流燃烧速率比正己烷-空气混合气提高了2.5倍;同时,掺氢比对混合气的爆炸压力与最大爆炸压力上升速率有明显的影响,对过稀或过浓燃料的影响尤为显著。  相似文献   
363.
为研究航空发动机对转轴间的流动与换热,建立了无轴向通流的对转环腔湍流边界层的修正卡门三层结构速度分布模型。基于该速度分布模型并依据动量传递与热量传递的比拟理论,推导了外轴内壁面换热努塞尔数的表达式及准则关系式。与CFD数值计算的速度分布、外轴内壁面换热努塞尔数进行对比验证,结果表明,对转环腔湍流边界层的修正卡门三层结构模型给出了一致的速度分布和换热规律。理论与CFD计算得到的外轴内壁面换热努赛尔数在低旋转雷诺数下符合较好,高旋转雷诺数下偏离不超过20%。  相似文献   
364.
为探究轴承旋转运动件表面油膜的流动和迁移特性,针对其拓扑结构——旋转圆盘,采用VOF方法描述圆盘表面油膜与空气界面的动态变化,结合流体动力学理论,建立了旋转圆盘表面油膜流动分析的计算模型,通过数值计算,分析和探讨了运行工况和润滑油粘度对圆盘表面油膜流动速度和厚度分布的影响。计算结果表明:润滑油膜呈近似圆盘状向圆盘边缘运动和迁移,离开圆盘边缘后分裂成油矢和油滴;油膜的厚度沿圆盘径向逐渐变薄;并随着供油量和润滑油粘度的增加而增大,随着圆盘转速的增高而减小;油膜的切向速度随着圆盘转速的增高而增大,但受供油量和润滑油粘度的影响较小;油膜的径向速度随着圆盘转速和供油量的增加而增大,随着润滑油粘度的增大而减小。与相关试验结果的对比表明,建立的数值分析方法具有较好的可靠性和普适性。  相似文献   
365.
以大气层内导弹逆轨拦截高速机动目标为背景,本文运用最优控制和双曲正切函数设计带角度约束的三维最优制导律。分别假设导弹弹道倾角和弹道偏角保持瞬时恒定,将三维制导分解为两个相互垂直平面内的二维制导。考虑导弹速度时变的情况,建立带角度约束的制导方程。设计一种双曲正切函数的变种,并将其设为脱靶量和角度约束的权重系数,根据极小值原理推导了最优制导律的解析表达式。双曲正切函数变种的引入,使得制导律对脱靶量和角度约束的要求是逐渐增强的,可以解决传统最优制导律初始段过载指令过大的问题。仿真结果表明了该制导律的有效性。  相似文献   
366.
破片速度对碳纤维层合板冲击损伤的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
为提升战斗部破片对航空复合材料结构的毁伤效果,采用空气炮冲击、数值仿真、战斗部静爆试验等手段,研究了层合板冲击损伤类型和分层面积随破片速度的变化规律,并分析了损伤机理。研究表明:层合板冲击损伤类型、机理和程度,与破片速度和层合板冲击临界速度(即冲击物穿透层合板的最小速度)的相对大小有关。在本文试验速度范围内,当破片速度小于层合板冲击临界速度时,造成背面裂缝型损伤,分层面积随破片速度增大而增大;当破片速度略大于层合板冲击临界速度时,造成背面炸裂型损伤,分层损伤范围最大;而更高的破片速度则造成切孔型损伤,分层损伤面积随破片速度的增大而减小,并趋近于切孔面积。为提高对复合材料结构的毁伤效果,应使破片着靶速度略大于层合板的冲击临界速度。  相似文献   
367.
《航天电子对抗》2020,36(2):50-50
据美太空新闻网2020年3月11日报道,美太空发展局(SDA)负责人在2020卫星大会上表示,该局正在评估云计算如何应用于快速识别并跟踪导弹运行轨迹。导弹探测与跟踪是太空发展局的重点工作之一,该局目前正在制定相关卫星部署计划,以识别目标、跟踪导弹并共享收集到的数据。这些数据需要进行快速处理并传输至战场,以免造成数据传输延迟。为此,该局正在采取2种方式开展数据处理,以加快数据传输速度:一是在离数据收集点更近的地方进行,如在装备天基传感器的卫星上;二是在离数据传输目的地更近的位置进行,如将数据传输回地面站进行处理。负责人表示,商业云数量及其可提供的服务使得地面数据处理更具优势。云计算可以灵活地处理用户所提供的数据,并对处理方式和数据去向进行优化,但也可能存在网络安全问题。  相似文献   
368.
为构建有效的机场场面视觉监视系统,提出了一种基于特征点持续跟踪与分析的移动目标速度测量方法。首先,利用场面几何特征对摄像机进行标定;然后,基于光流场对图像运动区域的特征点进行持续跟踪,在此基础上通过特征点轨迹聚类区分不同移动目标;最后,根据特征点高度与运动距离完成速度测量。所提方法能够利用机场场面摄像机获取的低视角单目视频图像,对移动目标的运动速度进行准确测量。基于广州白云国际机场的场面运行视频进行了仿真分析,验证了所提方法在低视角速度测量方面的可行性与优势。   相似文献   
369.
涵道螺旋桨被认为具有推进效率高、结构紧凑、安全性高及噪声水平低等优势,在多种飞行器上具有较高的应用潜力。为了探究几个重要设计变量对涵道螺旋桨气动特性的影响和流动机理,以推进式涵道螺旋桨为研究对象,使用基于雷诺平均Navier-Stokes(RANS)方程和多重参考坐标系(MRF)的准定常求解方法以及静止域和旋转域进行面搭接的结构网格,研究了螺旋桨旋转速度和来流速度、涵道径弦比以及涵道唇口偏转角度对涵道螺旋桨气动特性的影响和流动机理。研究表明,随着转速的增加,涵道推力占总推力的比例先增加后减小,在研究范围内,涵道和桨叶在不同的来流速度下表现出了不同的流动特性;随来流速度的增加,总推力和推进效率先增大后减小,推力和推进效率的非单调变化主要受到涵道唇口和桨叶当地工况以及涵道唇口和桨叶部件流动分离两方面的影响;带有涵道的构型中,涵道径弦比对涵道螺旋桨的推力特性有重要的影响,研究范围内不同径弦比的涵道螺旋桨的巡航工况下推进效率均大于孤立螺旋桨;研究的向外扩张的涵道唇口其大迎角特性较好,主要体现在大迎角状态下推力较大和失速特性较好,并在以上研究基础上分析总结了涵道螺旋桨和孤立螺旋桨的区别以及涵道与...  相似文献   
370.
传统离散速度方法在求解跨流域流动问题时,通常只求解动理学模型方程,即Boltzmann-BGK方程。与传统方法不同,改进离散速度方法同步求解了动理学模型方程和相应的宏观伴随方程。通过这种方式,可以将分子碰撞影响考虑到宏观伴随方程的通量计算中,同时宏观方程预估得到的结果可以用于预估平衡态,从而实现Boltzmann-BGK方程的全隐式离散。这两点改进可以有效克服传统方法在连续和近连续流区域计算效率低、计算精度差的缺陷。为了进一步减少速度空间的网格量和避免数值求积时的Runge现象,采用了非结构网格结合矩形律来离散速度空间并引进守恒修正来强制满足相容性条件。算例测试表明,采用速度空间非结构网格和守恒修正可以有效减少改进离散速度方法的计算量和内存花销。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号