全文获取类型
收费全文 | 7261篇 |
免费 | 1419篇 |
国内免费 | 969篇 |
专业分类
航空 | 5732篇 |
航天技术 | 956篇 |
综合类 | 963篇 |
航天 | 1998篇 |
出版年
2024年 | 156篇 |
2023年 | 276篇 |
2022年 | 310篇 |
2021年 | 321篇 |
2020年 | 353篇 |
2019年 | 331篇 |
2018年 | 207篇 |
2017年 | 242篇 |
2016年 | 265篇 |
2015年 | 240篇 |
2014年 | 324篇 |
2013年 | 306篇 |
2012年 | 409篇 |
2011年 | 462篇 |
2010年 | 320篇 |
2009年 | 397篇 |
2008年 | 435篇 |
2007年 | 416篇 |
2006年 | 334篇 |
2005年 | 338篇 |
2004年 | 334篇 |
2003年 | 309篇 |
2002年 | 275篇 |
2001年 | 298篇 |
2000年 | 242篇 |
1999年 | 204篇 |
1998年 | 234篇 |
1997年 | 199篇 |
1996年 | 183篇 |
1995年 | 150篇 |
1994年 | 146篇 |
1993年 | 136篇 |
1992年 | 130篇 |
1991年 | 99篇 |
1990年 | 65篇 |
1989年 | 97篇 |
1988年 | 40篇 |
1987年 | 47篇 |
1986年 | 11篇 |
1985年 | 4篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
排序方式: 共有9649条查询结果,搜索用时 0 毫秒
161.
对稳态射流及脉冲射流冲击靶板时的流场特性结构进行了探索和分析。采用高频粒子图像测速技术,在射流管口到冲击靶板间距为6倍管径的条件下,对稳态射流进口雷诺数为6 000的稳态射流及脉冲频率为20 Hz的脉冲射流进行了实验测量,得到了射流核心区、壁面射流区及滞止区内的速度分布。研究发现:①由于射流剪切作用的影响,脉冲射流核心区的最大轴向脉动速度为稳态射流的3倍。②滞止区内,由于射流的剪切作用和壁面的滞止作用,导致了脉冲射流轴向速度梯度最大为稳态射流的2倍,同时,滞止区内的最大脉动速度是稳态射流脉动速度的3倍。③脉冲射流对壁面的卷吸以及旋涡的产生和传播过程,破坏了壁面射流区稳定的速度边界层。相比稳态射流,脉冲射流的流场增加了湍流相干结构的含能并产生周期性的大尺度卷吸涡。 相似文献
162.
基于Patran/Nastran的结构优化系统的工程应用 总被引:1,自引:0,他引:1
采用基于有限元软件Patran/Nastran二次开发的结构优化系统,对两个卫星结构进行了以重量为目标、考虑基频和应力等约束的优化设计.系统由用户在Patran环境下完成问题建模,优化过程中调用Nastran作结构分析并结合二级多点逼近算法寻优.设计对象是由蜂窝夹层板、不同截面形状梁、板壳等组成的典型复杂航天器结构,设计过程中还利用人机交互技术,最终使重量明显降低,为工程部门改进设计提供了依据.算例结果之一与其他结构优化系统结果一致,进一步说明了所开发系统的正确性. 相似文献
163.
164.
针对飞机结构上常见的处于多轴应力应变(比例多轴)状态下的典型结构,采用3种多轴疲劳寿命分析模型,对该结构的疲劳危险部位进行疲劳寿命分析,并与单轴寿命分析方法的分析结果、疲劳试验结果进行了对比分析。首先对该结构进行细节有限元计算,确定结构的应力分布与应力水平,当载荷施加到88%的最大一级的峰值载荷时,疲劳危险部位的孔边即出现显著的塑性应变,因此,选用低周疲劳(LCF)寿命预测模型进行分析。选取的3种分析模型均是基于临界面的分析模型,分别是Wang-Shang模型、Smith-Watson-Topper(SWT)模型以及Morrow-Brown-Miller模型。为验证分析模型工程适用性,开展了该结构的多轴疲劳试验。与试验结果相比,3种分析模型的预测结果均偏大,其中Wang-Shang模型的预测结果最接近试验值,适用于本文这类结构;SWT模型和Morrow-Brown-Miller模型的预测结果误差相对较大。对于处于多轴载荷状态下的结构,应按照多轴疲劳寿命分析方法进行寿命预测,单轴疲劳寿命分析方法将给出过于危险的评定结果。 相似文献
165.
酚醛树脂基纳米多孔材料(Phenolic Resin-based Nanoporous Materials,PNM)是满足新一代航天飞行器轻质、高效隔热需求的新型热防护材料,传统制备方法中需使用超临界干燥技术,制备周期长、成本高。本研究通过两步法,即先合成线性酚醛树脂,再进行溶胶-凝胶的方法,实现了常压干燥PNM的制备。系统研究了固化剂含量、固化温度和固化时间对材料结构的影响和调控作用,分析了影响材料收缩率和热稳定性的因素。结果表明,PNM的微观纳米结构的变化会影响材料干燥后的收缩率,制备大颗粒、大孔径的微观结构更有利于降低材料的收缩率。而PNM的热稳定性主要受交联反应过程形成的化学结构的影响,通过优化固化剂的含量可提高PNM的热稳定性。当固化剂含量为10%,固化温度提高至150℃,固化时间延长至48 h的条件下,获得的PNM有最高的热稳定性(900℃下的残碳率为54.2%)、最发达的孔结构(比表面积为264.0 m2/g、孔容为2.67 cm3/g、平均孔径为40.0 nm)和最小的收缩率(0%)。此PNM制备方法简单、性能优异,在未来航天飞行器上有广阔的应用前景。 相似文献
166.
167.
对采用相同密度、不同材料的泡沫芯子制备的多种夹层复合材料进行了低能量和高能量冲击试验,在低能量冲击试验中它们的性能相近,在高能量冲击试验中性能出现了明显的差别。夹层复合材料的冲击性能与其静态试验、硬度试验、压缩和短梁弯曲试验的测试结果相关。 相似文献
168.
169.
本文以谐调叶盘有限元模型解析模态和失谐系统的实验测量模态作为基础信息,提出了一种整体叶盘结构失谐识别方法。该方法基于SNM降阶技术,大大降低了识别过程的计算花费以及对基础信息的要求;采用了子矩阵型技术使得失谐参数定义更加的自由,并使得该方法具有模型修正的功能;利用最可能向量技术处理实验测量模态振型,有效的限制了测量噪声、非线性等因素对识别过程的影响。最后以一个真实叶盘结构的数值仿真分析证明了该方法的正确及有效性。 相似文献
170.
高速飞行器热结构工作时变模态参数辨识 总被引:1,自引:0,他引:1
高速飞行器由于其很高的飞行速度而无可避免地受到气动加热作用的影响,进而引起结构特性的时变。采用理论或有限元方法(FEM)进行数值分析,难以获取反映结构在飞行(工作)状态下的真实模态参数。通过辨识获取高速飞行器热环境下的时变结构模态参数是一项十分具有挑战性的任务。针对此问题,引入参数化时频域的最大似然方法,对气动加热作用下的高速飞行器升力面结构的时变模态参数进行了辨识。通过模拟真实飞行状态的数值算例研究,说明参数化时频域的最大似然方法能够很好地辨识出低信噪比(SNR)情况下的模态频率和模态振型,验证了参数化时频域最大似然方法适用于具有显著时变特征的高速飞行器热结构的时变结构模态参数辨识,可为将来相关的工程研究和应用提供良好的理论支持。 相似文献