首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1663篇
  免费   355篇
  国内免费   239篇
航空   1222篇
航天技术   351篇
综合类   200篇
航天   484篇
  2024年   19篇
  2023年   79篇
  2022年   103篇
  2021年   115篇
  2020年   83篇
  2019年   90篇
  2018年   75篇
  2017年   71篇
  2016年   93篇
  2015年   68篇
  2014年   91篇
  2013年   94篇
  2012年   94篇
  2011年   123篇
  2010年   78篇
  2009年   81篇
  2008年   76篇
  2007年   75篇
  2006年   69篇
  2005年   61篇
  2004年   59篇
  2003年   69篇
  2002年   51篇
  2001年   63篇
  2000年   35篇
  1999年   43篇
  1998年   48篇
  1997年   48篇
  1996年   32篇
  1995年   23篇
  1994年   21篇
  1993年   26篇
  1992年   26篇
  1991年   22篇
  1990年   16篇
  1989年   17篇
  1988年   9篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1981年   1篇
排序方式: 共有2257条查询结果,搜索用时 31 毫秒
121.
针对柔性接头动态迟滞曲线受控制系统控制位置精度和动态响应速度影响较大的问题,基于电液伺服机构和柔性接头变刚度变阻尼模型,构建了柔性喷管的电液伺服机构-变刚度变阻尼模型,将其和电液伺服机构-定刚度定阻尼模型进行了对比。分析了电液伺服机构主要参数、柔性接头工作参数等对电液伺服机构-柔性接头系统动态特性的影响。分析结果表明:电液伺服机构-变刚度变阻尼模型所构造的迟滞曲线可更准确地与实验结果相吻合,并符合迟滞曲线随频率变化的规律,反馈系数、放大器静态放大系数、电液伺服机构增益、滑阀流量增益等参数对系统动态特性的影响更为明显。该模型为固体火箭发动机电液伺服机构-柔性接头系统动态特性的调整提供理论依据。  相似文献   
122.
赵振军  闫昱  曾开春  赵治华 《航空学报》2020,41(11):123934-123934
全模颤振风洞试验需要通过软支撑系统模拟飞行器的自由飞行状态并调整模型姿态达到配平状态。参考NASA双索悬挂方案,提出了一种两电机驱动的三索悬挂系统,利用后方两索的同向/反向联动实现模型俯仰和滚转姿态的调整,利用弹簧刚度以及钢绳张力设计实现支撑频率要求。基于柔性多体动力学方法,建立了包括飞行器刚体模型、柔性索、滑轮、弹簧、气动力模型、伺服电机控制在内的复杂系统动力学模型,其中,利用任意拉格朗日-欧拉(ALE)变长度索单元描述钢绳,利用不约束物质坐标的索结点约束描述钢绳与滑轮相互作用,利用索结点物质输运速度约束描述伺服电机绞盘,利用飞行力学的气动力模型描述吹风下的气动力。基于该模型,通过小扰动响应辨识研究了弹簧刚度、钢绳张力、连接点位置等因素对支撑频率的影响规律,并分析了系统姿态调整能力,俯仰调整范围达到-12.5°~12.5°,滚转调整范围达到-45°~45°。采用滑轮处电位计测量的钢绳相对位移作为反馈信号,基于设计的控制律利用多体动力学求解器与Simulink对风洞吹风下的姿态调整过程进行仿真,模型达到配平状态,获得了吹风下的索拉力和伺服电机功率,为系统设计提供基础。  相似文献   
123.
在2月下旬落下帷幕的美国科学促进会年会上,由阿尔法磁谱仪项目的首席科学家、麻省理工学院物理学家、诺贝尔奖获得者丁肇中领导的研究团队对外正式宣布,阿尔法磁谱仪发现了弱作用重粒子(WIMP)存在的证据,而这一粒子则是一种暗物质的候选体。物理学或将迎来重大革命,人类认知或将掀开新的篇章。而这其中,深深地印上了中国航天的贡献。前沿探索新奇不断暗物质"面纱"即将揭开?前沿探索领域总是能给世人带来  相似文献   
124.
权申明  晁涛  张登辉  杨明 《宇航学报》2022,43(10):1322-1332
针对红外导引头侧窗探测模式下,非对称视场约束造成末制导阶段目标易丢失的问题,提出一种考虑侧窗约束的模型预测静态规划末制导方法。首先,基于体视线坐标系建立三维相对运动模型,得到不依赖于“小攻角”假设的准确模型。在处理无过程约束问题的模型预测静态规划方法基础上,引入松弛变量与虚拟控制量,设计出考虑侧窗视场约束的末制导算法。为了进一步降低末制导算法对初始猜测轨迹的依赖性,提高适应性与计算效率,提出逐步增加约束条件的计算策略。仿真结果表明,该方法在末制导过程中满足侧窗约束,相比于凸优化方法,优化变量减少,计算速度更快;相比于基于障碍李雅普诺夫函数的末制导律,能够满足侧窗约束,同时能适应不同的初始条件。  相似文献   
125.
使用聚酰亚胺(PI)膜和PI纤维编织布制备深空探测用柔性织物复合材料,研究表面处理对PI膜和PI纤维编织布之间粘结性能的影响。采用自制表面处理剂分别对PI膜和PI纤维编织布的表面进行处理,再经硅橡胶胶黏剂粘结制备柔性复合材料。使用T剥离强度试验方法测试柔性织物复合材料的层间胶接性能,并分析复合材料剥离面的形貌状态。结果显示,PI膜和PI织物的表面处理可以显著提高柔性织物复合材料的T剥离强度。其中,PI膜和PI织物未经表面处理时,柔性织物复合材料的T剥离强度为8.9 N/cm。对PI膜进行表面处理,或者对PI膜和PI织物均进行表面处理的情况下,柔性织物复合材料的T剥离强度增加至11.7 N/cm和12.8 N/cm,分别提高了31.5%和43.8%。这表明对PI膜及PI织物进行合理的表面处理,可以显著提高柔性织物复合材料的胶接性能。  相似文献   
126.
为了改善高超声速飞行器前体压缩面边界层速度型的饱满程度,降低进气道壁面流动分离的潜在风险,提出了基于阵列微型叶片式涡流发生器的前体压缩面低能流掺混方法。采用数值模拟方法研究了涡流发生器在来流马赫数7状态下的流动特性,揭示了主要流动控制机理,并分析了安装角对掺混效果的影响规律。研究结果表明:微型叶片式涡流发生器可对近壁气流产生一定扰动,形成局部大侧滑角、低压区域,掺混的主要机理在于叶片两侧分别形成扫掠激波、膨胀波,诱导近壁流体向叶片方向偏转,形成局部横向迁移,进而与主流产生掺混效应;负安装角的涡流发生器的扰动能力最强,但总压损失也最大;正安装角时涡流发生器的扰动能力随安装角的增大而增大;相比于无控制状态,所有叶片式涡流发生器均可降低边界层形状因子,安装角15°时的边界层形状因子最小,边界层速度型最为饱满,说明该状态下壁面流动具有较优的抗逆压分离能力。  相似文献   
127.
为研究前体尾流对降落伞工作性能的非定常影响,基于Realizablek-ε湍流模型采用PISO算法开展了物伞系统的非定常绕流数值计算,获得了精细的流场旋涡结构。在此基础上,研究了不同拖曳比下物伞系统的尾涡演变规律、流场分布规律以及伞衣气动特性变化。结果表明:前体尾涡导致伞衣入口处的涡量大小和方向时刻变化,随拖曳比增加,涡量黏性耗散增强,进入伞衣的旋涡强度逐渐减弱,伞衣入口形成稳定的负涡量区,伞衣尾涡脱离周期随之延长;拖曳比对尾涡区后端(伞衣入口处)流场压力的影响远大于前端,随拖曳比增加,流动形式逐渐由闭式转变为开式,流场的速度分布和压力分布更为对称,伞衣入口形成稳定的正压区,内外压差增加;当拖曳比大于9时,前体尾流对降落伞阻力系数和表面压强系数的影响减小。   相似文献   
128.
大型飞机在飞行过程中机身后体会产生一对反向旋转的脱体涡(后体主涡),该涡与平尾翼尖涡共同构成飞机后体的涡系结构。在风洞中,利用激光粒子测速(PIV)方法,对单独后体和加装不同展长平尾的后体,分别研究涡系结构的动力学特征。结果表明:后体主涡的涡核中心沿流向明显向上移动;加装平尾后,涡系呈现典型的四涡结构,平尾翼尖涡对后体主涡影响显著,加大了后者向上移动的趋势,同时使其沿展向外移,并显著削弱其涡旋强度;平尾展长增加后,后体主涡受到的影响有所减弱。在低速环境下,来流速度对后体涡系结构的无量纲动力学参数影响较小。  相似文献   
129.
三维四向编织复合材料等效热特性数值分析和试验研究   总被引:9,自引:3,他引:9  
 采用“米”字型枝状胞体有限元模型和试验方法对三维四向编织复合材料的整体等效热膨胀系数和等效热传导系数进行了分析并将计算结果和试验值进行了比较。研究表明枝状胞体模型能较为真实的反映三维四向编织复合材料的结构构形;有限元方法在分析热膨胀、热传导方面具有较好的精度;三维四向编织复合材料编织方向的热膨胀系数随着纤维体积比的增加而减小,随着编织角的增加而减小;热传导系数随着纤维体积比的增加而增大,随着编织角的增大而增大。  相似文献   
130.
应用于小发柔性转子的高速动平衡技术   总被引:5,自引:1,他引:5  
从某新型涡轴发动机动力涡轮转子的结构特点出发 ,简要说明了对该转子进行实际高速动平衡操作存在的困难及采取的对策。在试验过程中 ,创造性地应用影响系数法和自行设计加工的精密平衡卡箍 ,高质量地完成了细长柔性转子的高速动平衡试验。研究表明 :高速动平衡技术可大大减小细长柔性转子的动挠度和支承动反力 ,从而达到减小发动机振动的目的  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号