首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   234篇
  国内免费   69篇
航空   664篇
航天技术   76篇
综合类   55篇
航天   156篇
  2024年   6篇
  2023年   16篇
  2022年   39篇
  2021年   38篇
  2020年   35篇
  2019年   30篇
  2018年   27篇
  2017年   37篇
  2016年   30篇
  2015年   25篇
  2014年   42篇
  2013年   42篇
  2012年   26篇
  2011年   36篇
  2010年   46篇
  2009年   42篇
  2008年   38篇
  2007年   34篇
  2006年   25篇
  2005年   24篇
  2004年   32篇
  2003年   24篇
  2002年   29篇
  2001年   23篇
  2000年   18篇
  1999年   17篇
  1998年   15篇
  1997年   22篇
  1996年   13篇
  1995年   19篇
  1994年   22篇
  1993年   22篇
  1992年   15篇
  1991年   10篇
  1990年   10篇
  1989年   14篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
排序方式: 共有951条查询结果,搜索用时 15 毫秒
31.
采用大涡模拟与声类比的方法研究了尾缘锯齿对涡轮叶栅噪声的影响.设计了两种不同的尾缘锯齿,对比了Re=3.3×105(基于叶片弦长与叶栅出口速度)下两种不同结构锯齿尾缘叶栅与直尾缘叶栅的声功率.结果表明:尾缘锯齿可以降低叶片吸力面边界层分离噪声约5dB,降低尾缘涡脱落噪声约10dB.进一步的研究表明,尾缘锯齿可以降低叶片尾缘附近表面的压力脉动幅值约50%,将展向相关尺度较大的涡破碎成展向相关尺度较小的涡,并消除尾缘脱落涡,这三者的综合作用使噪声得到降低.   相似文献   
32.
秦勇  刘华坪  王若玉  宋彦萍  陈浮 《推进技术》2017,38(5):1030-1037
对吸力面施加合成射流激励的高负荷压气机静叶栅展开数值模拟,系统地研究不同激励参数对单缝合成射流改善叶栅气动性能的影响,并探索分段式合成射流控制流动分离的有效性。研究结果表明,单缝合成射流对栅内流动的作用效果主要取决于两个因素:射流切向动量注入带来的气动性能改善与射流输运过程的附加流动损失。单缝合成射流具有较为宽广的有效频率范围,当激励频率等于主流流过叶型的频率且射流满足有效激励动量要求时,对叶栅气动性能的改善效果最佳,总压损失降低约14.26%。分段式合成射流能够较好地适应不同叶高处分离起始点沿轴向变化对最佳流动控制位置的要求,在不增加有效射流面积的前提下可较单缝射流更为有效地控制流动分离,此时的损失降低幅度高达15.84%,从另外一个角度证实了激励位置对于非定常激励的重要性。  相似文献   
33.
秦勇  王若玉  宋彦萍  刘华坪  陈浮 《推进技术》2017,38(9):1975-1986
利用端壁合成射流技术对高负荷扩压叶栅内的流动分离控制展开数值研究,探讨其改善损失的作用机理及影响因素。研究结果表明,端壁合成射流可以显著提升叶栅气动性能,使总压损失最大降低21.63%,静压升提高5.60%。射流形成的流向射流旋涡通过上洗/下洗作用促进了端壁附面层与主流高速流体间的动量交换,阻碍了通道涡向叶展中部的迁移、削弱其展向影响范围,并通过流向动量注入效应增大了激励缝下游流体的能量,从而推迟流动分离、降低叶栅损失。激励位置和射流角度是影响端壁合成射流作用效果的重要参数,当激励位于角区分离线上游附近且射流角度较小时,流动控制效果最佳。此外,提高射流动量也有助于增强其控制流动分离的能力。  相似文献   
34.
陈聪  刘华坪  陈浮  宋彦萍  王亚博 《推进技术》2017,38(11):2504-2511
为了探究不同攻角下单孔以及双孔射流旋涡发生器(VGJs)对高速扩压叶栅气动性能的影响和作用机理,采用数值模拟的方法对栅内气动性能参数以及端区流动分布进行了较为详细的分析。数值结果表明:单孔以及同向双孔射流均具有较好的变攻角特性,随着攻角的增加控制效果先显著增加然后略微降低,在2°攻角条件下,VGJs使得总压损失降低最为明显,单孔射流达到11.0%。反向双孔射流的控制效果较差,在-4°攻角条件下甚至出现了3.9%的总压损失增长。采用射流旋涡发生器,射流旋涡(JV)将通道涡分成两部分,靠近吸力面的次生通道涡(PVⅡ)很快汇入角区,端壁展向涡(SV)消失,吸力面分离被推迟,但吸力面上的展向运动显著增强,叶栅通道内的二次流动得到有效控制。  相似文献   
35.
为了研究组合抽吸对高负荷压气机叶栅内部分离流动控制的效果和机理,以内部同时存在有吸力面附面层分离和角区分离的压气机叶栅为研究对象,利用实验和数值模拟对3种不同的抽吸方案进行了探索。结果表明:附面层抽吸可以显著地改善叶栅性能和攻角特性; 在-5°~8°攻角范围内,吸附式叶栅的叶型损失系数得到了显著的降低,且抽吸量为0.76%时对应的损失系数降幅达到约67%;吸力面局部叶展抽吸方案(SS1)可以有效地消除抽吸叶展附近的分离,结果却导致角区分离面积变大;组合抽吸方案(CS)基本全部消除了叶栅内吸力面上的附面层分离和角区分离,因此全叶展上的负荷和扩压能力得到了显著的提升;不同攻角下损失系数随抽吸流量组合的变化规律不同,大攻角下吸力面上的抽吸控制更能有效地降低叶栅内的损失;进行组合抽吸时,需要针对不同的攻角选择最佳的抽吸流量组合。  相似文献   
36.
涡流发生器对高负荷扩压叶栅性能影响的机理分析   总被引:3,自引:5,他引:3       下载免费PDF全文
为探明涡流发生器流动控制技术对高负荷扩压叶栅性能影响及作用机理,根据高负荷扩压叶栅的流动特点,提出了在叶栅入口端壁处加涡流发生器的流动控制方案,通过计算研究了采用涡流发生器前后叶栅气动性能、附面层及主要旋涡结构的变化。研究结果表明:采用涡流发生器后,叶栅正攻角下的气动性能显著提升,总压损失减小,静压升增大,稳定工作最大正攻角从3°增加至5°,其中在3°攻角下总压损失系数下降0.028,静压系数提升0.033;涡流发生器生成的尾涡阻挡端壁附面层由压力面向吸力面的横向迁移,使吸力面/端壁区域聚集的低能流体减少,改善了角区流动;采用涡流发生器后,通道涡、集中脱落涡和壁角涡减弱,角区分离得到抑制。  相似文献   
37.
端弯联合弯叶片对叶栅旋涡结构和气动性能的影响   总被引:1,自引:2,他引:1       下载免费PDF全文
丁骏  王松涛  刘勋  王仲奇 《推进技术》2016,37(11):2072-2079
为了研究弯叶片弯角、端弯弯高和端弯弯角三个参数对扩压叶栅流道内的旋涡结构和气动性能所造成的影响大小和交互作用的主次顺序,以环形扩压叶栅为研究对象,通过正交试验设计的方法,对试验结果进行分析。结果表明,存在一个最佳弯叶片弯角以平衡集中脱落涡和壁角涡对叶栅出口总压损失分布的影响;弯叶片弯角的提高会导致壁角涡减弱并且涡核靠向端壁,集中脱落涡增强并且涡核靠向流道中部;旋涡结构的变化进而导致端部高损失区域损失减小并且靠向集中脱落涡涡核,流道中部损失增厚并且向中部收缩。端弯的弯高和弯角对角区的影响明显强于流道中部;壁角涡强度的提高导致端部损失的增加;集中脱落涡涡核向端壁移动,导致流道中部损失向端区扩散,但损失减小有限。  相似文献   
38.
高负荷压气机静叶根部叶型气动性能实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李晓东  钟兢军  高宇 《推进技术》2017,38(3):581-587
为研究高负荷压气机静叶根部流动状态,抽取该静叶根部叶型并模化成为平面叶栅进行吹风实验,冲角变化范围为-6°~+6°、进口马赫数变化范围为0.5~0.7。对叶栅出口截面气动参数进行了详细的测量,结果表明:非正冲角时叶展中部节距平均总压损失系数小于等于0.036,尾迹宽度和总压损失峰值随马赫数变化均不明显,正冲角时尾迹宽度和总压损失峰值急剧增加;端壁处的压力梯度随马赫数和冲角的增加而增加;0°冲角下随马赫数的增大,出口叶展中部截面二次流动能系数增加,二次流动得到加强,高能量损失区域增大并且尾迹略有变宽。  相似文献   
39.
串列叶栅尾迹特性的实验研究   总被引:5,自引:0,他引:5  
对串列叶栅的尾迹特性进行了实验研究。研究表明:串列叶栅尾迹平均速度和单列一样满足相似律。串列叶栅的尾迹平均速度和紊流脉动速度沿额线方向比单列叶栅变化平缓。对于串列叶栅在叶栅下游相对距离X/CT>0.7时,尾迹纵向紊流度基本不随距离X/CT变化。  相似文献   
40.
本期导读     
<正>附面层抽吸技术现代航空发动机压气机要实现以更少级数达到更高压比的设计目标,需突破大弯角高负荷叶栅研制关键技术。而该技术的难点在于,吸力面附面层低能流体在强逆压梯度下容易从壁面分离,导致流道堵塞,造成发动机气动损失增加及性能下降。大量研究表明,附面层控制技术对于提高压气机性能和改善流场结构有明显作用。因此,若能主动控制叶片表面附面层,使流道中的流场分布更为合理,就有可能推迟或抑制分离,实现更好的气动性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号