首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1982篇
  免费   279篇
  国内免费   176篇
航空   1267篇
航天技术   273篇
综合类   143篇
航天   754篇
  2024年   13篇
  2023年   50篇
  2022年   68篇
  2021年   78篇
  2020年   72篇
  2019年   78篇
  2018年   49篇
  2017年   51篇
  2016年   62篇
  2015年   81篇
  2014年   93篇
  2013年   129篇
  2012年   121篇
  2011年   129篇
  2010年   109篇
  2009年   103篇
  2008年   117篇
  2007年   86篇
  2006年   104篇
  2005年   92篇
  2004年   61篇
  2003年   56篇
  2002年   78篇
  2001年   92篇
  2000年   53篇
  1999年   36篇
  1998年   42篇
  1997年   47篇
  1996年   35篇
  1995年   40篇
  1994年   33篇
  1993年   34篇
  1992年   40篇
  1991年   34篇
  1990年   24篇
  1989年   25篇
  1988年   5篇
  1987年   11篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有2437条查询结果,搜索用时 656 毫秒
871.
空间太阳能电站高低压混合供电系统设计   总被引:1,自引:0,他引:1  
在调研美国NASA空间太阳能电站(SPS)供配电相关方案的基础上,针对空间太阳能电站平台设备和有效载荷设备两种不同的供电特性要求,提出将高低压混合供电技术应用于空间太阳能电站的供电系统设计。该设计在满足高效对地供电传输要求的同时,能够确保航天器平台自身的稳定、可靠运行。文章介绍了高低压混合供电技术的原理和系统构成;针对系统高于目前在轨卫星6个数量级的超高压需求,分析了高压电缆和高压继电器研制的可行性,得出高压电缆的重点研究方向,即通过材料及结构优化来减小质量、增加散热、减小弯曲半径等,高压继电器的研究方向为研制高压混合继电器(EMPC)中适用于航天任务的高压固态功率管;调研分析了目前常用的空间等离子体被动防护技术和主动防护技术,通过比较,说明主动防护技术更适用于空间太阳能电站的超高压系统,可为我国建设超大功率空间太阳能电站提供技术参考。  相似文献   
872.
<正>近地小行星作为一种太空武器其威力到底有多大,这是人们普遍关心的问题。小行星武器属于动能武器的范畴,因为它在轰击地面目标的时候会产生大量的动能,大量的动能主要以冲击波的形式表现从来,其次是热辐射、巨石块、电磁效应和继发效应等。产生动能的多少取决于小行星的直径、飞行速度和小行星的密度。用公式表示:动能量=6.256 x 10-8 x(直径)3 x(速度)2 x(密度)公式中的动能量用兆吨表示,直径用米表示,相对于地球的速度用千米/秒表示,密度用克/立方厘米表示。  相似文献   
873.
《国际太空》2014,(11):3
《国际太空》紧密配合中国航天器、运载器的研制情况,采用广泛报道与专题介绍相结合的方式,及时、全面、深入地刊登航天领域的七大方面最新科技信息。·中国航天的最新科技成果·世界各国的新航天政策、计划和规划·全球航天未来发展趋势·国外各类新型航天器·航天领域采用的新技术、新设计和新方法·国际卫星及其应用市场和卫星发射市场·新型运载火箭及其地面设施本刊设有群星闪烁、载人航天、空间探索、军事世界、本期视点、宇航巡礼、热点焦点、技术沙  相似文献   
874.
飞机燃油箱气相空间平衡氧浓度理论研究   总被引:3,自引:1,他引:3  
油箱上部空间平衡氧浓度的确定是设计机载油箱惰性化系统的基础。采用微元段计算方法,在考虑载油量、压力随飞行高度变化、燃油温度和燃油蒸汽压的情况下,建立了油箱上部气相空间平衡氧浓度的数学模型。首先将模型计算结果与文献公布的数据进行了比较,验证了模型的正确性。然后分析了不同因素对平衡氧浓度的影响。研究结果表明:不同燃油的氧氮溶解特性会对平衡氧浓度造成直接影响;平衡氧浓度与载油量有关,且不呈线性关系;燃油温度增加后,平衡氧浓度下降;此外,随着飞行高度增加,由于气相空间总压和氧氮分压下降,燃油的蒸汽压对平衡氧浓度的影响也越大。研究结果将为惰性化气体流量的估算和设计提供一定的理论基础。  相似文献   
875.
综合高燃压中型运载火箭高密度发射燃气流地面排导需求及烧蚀风险分析,提出基于地面双面导流装置与高位挡流墙结合的地面低高度排导技术方案。利用火箭发射燃气动力学研究总结的燃气流膨胀特性以及导流型面设计方法,解决了地面低高度排导技术涉及的地面导流装置导流型面气动设计以及尺度控制两个关键问题。地面低高度排导技术方案设计与燃气流场瞬态仿真多轮叠代,实现了燃气流排导烧蚀范围合理控制,避免了燃气流低高度排导烧蚀反溅影响箭体。地面低高度排导技术采用专利支撑的喷水冷却防护方案实现高燃压中型运载火箭发射燃气流强烧蚀环境发射系统、发射设施综合防护。基于喷流缩比试验相似性控制方法研制了1∶10比例喷流缩比试验系统,通过喷流缩比试验验证确认高燃压中型运载火箭发射燃气流能够实现地面低高度安全、顺畅排导,同时与发射台、导流装置结构融合的阵列喷水方案能够行之有效解决高燃压中型运载火箭地面低高度排导强烧蚀难题。  相似文献   
876.
自由分子流微电热推力器工作特性和性能研究   总被引:3,自引:1,他引:2  
微推进地面试验系统由推进剂贮存供应控制单元、电源供应控制单元、虚拟仪器测控单元和推力器等组成。通过FMMFL的设计加工和地面试验系统建设,在大气状态下,对FMMR的工作特性和性能进行研究,并与理论分析和数值模拟计算结果进行了对比分析。研究结果表明,在大气状态下,基于MEMS的薄膜温度传感器和薄膜加热器工作稳定;当输入功率为14.6W,工作压强为100Pa时,推力器工作温度为600K。推进剂工质为N2时,质量流量为3.720mg/s,比冲为54.254s,推力为1.979mN;推进剂工质为H2O时,质量流量为2.976mg/s,比冲为68.163s,推力为2.000mN。FMMR的各项性能参数与理论分析结果一致。通过优化设计和系统集成,FMMR的性能将得到进一步提高。  相似文献   
877.
卫星运行需要地面测控系统的支持.通过对某些卫星运行与地面测控系统支持方面的实际分析,总结其设计研制和协调中不足,研究卫星系统与地面测控系统的协调设计,并提出相应建议,为我国的卫星发展作一些借鉴.  相似文献   
878.
跨声速涡轮叶栅激波损失控制方法   总被引:5,自引:2,他引:3  
董明  葛宁  陈云 《航空动力学报》2018,33(5):1226-1235
为了降低高负荷跨声速高压涡轮激波损失,发展了针对性的涡轮叶栅激波控制方法。针对吸力侧激波,提出可控膨胀设计概念,结合基于曲率的叶型设计方法,通过调整吸力面曲率分布以控制气流膨胀力度,减小了尾缘激波前马赫数,有效减弱了吸力侧激波强度和叶栅出口压力不均匀程度。针对压力侧激波,发展了消波设计方法,在吸力面的激波作用区域设计一鼓包型线,利用鼓包迎风面压缩波的预增压作用和外凸面膨胀波的消波作用,有效抑制了激波/边界层相互干扰,显著削弱了反射激波强度。可控膨胀设计和消波设计对叶栅尾缘两道激波的控制作用相互独立,可单独采用,当两种方法相结合时,吸力侧激波强度降低了29.66%,叶栅出口压力不均匀程度减小了29.28%,总压损失系数减小了12.11%。   相似文献   
879.
粉末推进剂流化过程及高压流化机制分析   总被引:2,自引:1,他引:1       下载免费PDF全文
孙海俊  胡春波  徐义华 《推进技术》2018,39(12):2853-2862
为深入探究粉末发动机推进剂供给装置内的粉末流化特性,通过搭建粉末高压流化过程的可视化实验系统,开展了0.3~5MPa压强条件下粉末流化过程和流化特征研究,并结合压强信号的均方差分析结果以及颗粒起动的各类学说,详细分析了粉末流化模式以及高压流化机制。结果表明:随压强升高,粉末表现出不同的流化模式,其中在低压(1.5MPa)流化模式时,其流化压强均方差最小,粉末为局部波动状态;过渡阶段流化模式时,其流化压强均方差最大,不稳定气固分界面形成;而高压(2.3MPa)流化模式时,在活塞与流化进气的双重作用下,储箱内可形成稳定的气固分界面,为粉末推进剂的稳定输送提供了有力证明;粉末的高压流化机制为颗粒斜面飞升与湍流共同作用的结果。  相似文献   
880.
热容法测量推进剂剩余量的地面试验   总被引:1,自引:0,他引:1  
摘要: 热容法作为一种新的推进剂剩余量测量方法,由于具有实施方便、测量精度高等优点,适用于卫星在轨寿命末期的推进剂测量.为了验证热容法的可行性,考察热容法的测量精度,并对星上热容法方案给出实施建议,对某贮箱进行了热容法试验验证研究.在不同加热工况下,对不同试液装填量进行试验,采集不同测温点的热响应数据,通过对试验数据的分析,得出了热容法的测量精度,验证了热容法的可行性,并且提出了具体的实施建议,为热容法的后续在轨应用提供参考.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号