首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   184篇
  国内免费   51篇
航空   577篇
航天技术   42篇
综合类   34篇
航天   60篇
  2024年   5篇
  2023年   29篇
  2022年   36篇
  2021年   25篇
  2020年   41篇
  2019年   38篇
  2018年   31篇
  2017年   50篇
  2016年   55篇
  2015年   40篇
  2014年   50篇
  2013年   34篇
  2012年   40篇
  2011年   20篇
  2010年   29篇
  2009年   30篇
  2008年   17篇
  2007年   16篇
  2006年   14篇
  2005年   10篇
  2004年   14篇
  2003年   11篇
  2002年   15篇
  2001年   5篇
  2000年   10篇
  1999年   9篇
  1998年   4篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
排序方式: 共有713条查询结果,搜索用时 312 毫秒
341.
隔板与机匣之间留有间隙,间隙的存在势必会对超声速膨胀器的内部流场和总体性能产生影响,为了获得超声速膨胀器内部间隙流动的流动细节,采用三维雷诺平均Navier-Stokes方程和标准k-ε湍流模型,就顶部间隙对超声速膨胀器流动特性的影响进行了数值研究。结果表明:膨胀流道出口斜激波导致吸力面压力高于压力面,隔板尾缘附近部分泄漏流体经间隙流回压力面侧;间隙的存在导致吸力面进口及中、后部近下端壁压力上升,而压力面前缘附近压力下降,对比同一隔板位置,间隙高度每增加1%喉部高度,超声速膨胀器隔板载荷系数最高下降2.6%;端壁损失和斜激波损失降低,但产生了泄漏损失,三维流道内总的流动损失增加,膨胀器效率降低,本文研究范围内效率最多下降8.8%;马蹄涡、泄漏涡及二者之间的相互作用是顶部区域的主要涡系结构;前缘附近气流经间隙流到吸力面侧和尾缘附近泄漏流体越过间隙重新流回压力面侧是间隙内气流的主要运动形式。  相似文献   
342.
李钰洁  刘永葆 《推进技术》2016,37(4):646-652
针对多级亚声速轴流涡轮级间干涉的非定常现象,通过非线性谐波(NLH)法进行了非定常数值计算,加入AGS(Abu Ghannam Shaw)转捩模型的Spalart-Allmaras(S-A)湍流模型对转捩特性进行捕捉,与实验结果的对比验证了计算方法的可信性。研究结果表明,4阶谐波的NLH法在计算成本与计算精度间获得了较好折中;叶片前缘是关键的换热区域,静叶高温区主要集中在叶片前缘以及近叶顶区,转子叶片高温区主要集中在叶片前缘靠近叶顶区;转子叶片的相对运动不断切割静叶尾流,叶栅湍流场分布呈周期性变化,叶片高温区产生了明显的温度波动,其中Ⅱ级静叶高温区温度波动幅值达11K。  相似文献   
343.
带吸力面小翼的压气机叶栅变间隙特性实验   总被引:1,自引:0,他引:1  
为了进一步揭示吸力面小翼在不同叶尖间隙条件下的影响机理,开展了有/无吸力面小翼的压气机叶栅变间隙特性实验.结果表明:与无间隙叶栅相比,叶尖相对间隙为1%时引入的泄漏流可以有效抑制叶片吸力面/端壁角区三维分离的产生,叶栅总损失和气动堵塞程度最低,此时为研究的4种间隙工况中的最佳间隙工况.吸力面小翼在此间隙下降低了泄漏涡强度的同时使通道涡增强,叶片吸力面重新出现了三维分离流动,叶栅总损失和堵塞程度均有所增加.在叶尖相对间隙为2%和3%时,带吸力面小翼叶栅中叶尖分离涡增强,主导叶尖区流动的泄漏涡强度减弱,两种间隙下叶栅总损失系数分别降低了8.9%和12.5%,堵塞系数分别降低了6.9%和6.3%.在研究的3种非零间隙条件下吸力面小翼降低了叶栅气动损失对叶尖间隙变化的敏感性,减弱了叶尖泄漏涡造成的叶栅出口气流角的欠偏转/过偏转程度.   相似文献   
344.
基于套圈滚道圆环的几何结构方程,建立了钢球和套圈的三维动态接触关系.考虑钢球和保持架的间隙碰撞作用,建立球轴承-曲柄滑块机构系统多体接触动力学模型.运用广义-α方法计算分析了不同转速、径向游隙和保持架兜孔半径间隙下球轴承-机构系统的运动精度和动力学特性,获得球轴承-机构系统的动态误差、套圈中心的相对运动轨迹、保持架中心的运动轨迹和动态作用力等动力学响应.计算结果表明:随着转速和球轴承径向游隙的增加,约束反力、系统动态误差、套圈中心的相对运动轨迹、保持架与套圈中心的相对运动轨迹、球轴承内部的作用力、钢球与保持架的间隙碰撞力均增加.随着保持架兜孔半径间隙的增加,保持架与套圈中心的相对运动轨迹、钢球与保持架的间隙碰撞力和钢球打滑均增加.   相似文献   
345.
叶尖间隙对离心叶轮偏置分流叶片工作机理的影响   总被引:2,自引:0,他引:2  
采用计算流体力学方法研究了不同叶尖间隙情况下偏置分流叶片提升离心叶轮性能的机理.叶尖间隙较小时,主叶片吸力面附近分离区导致主要损失,分流叶片偏向于主叶片吸力面利于削弱损失、提升叶轮性能;随着叶尖间隙的增加,泄漏流的影响增加以至损失集中于分流叶片和主叶片压力之间的通道,分流叶片宜向主叶片压力面偏置,以减少泄漏流在同一通道的聚集.叶尖间隙和分流叶片周向位置对间隙泄漏流、叶片吸力面分离形成的损失及相互关系有着耦合影响,分流叶片周向位置的改变可以调整通道的横向压力梯度、泄漏流掺混入主流的位置,改善分流叶片两侧通道的损失的分配,分流叶片最佳偏置方向随叶尖间隙的大小而发生改变.   相似文献   
346.
为了探究气动旋转不稳定性和叶顶泄漏流脉动特性的关系,对一台1.5级低速轴流压气机进行了实验和数值研究.在转子顶部机匣上布置动态压力传感器,采集不同流量下叶顶的压力脉动信号,在小流量下捕捉到了旋转不稳定性的产生.通过锁相平均和方均根压力图谱,发现当叶顶泄漏流与相邻叶片发生干涉时叶顶流场脉动显著增强.对压气机转子进行全通道数值模拟,发现叶顶泄漏流在小流量下发生周期性振荡,且相邻流道间的压力脉动具有相位延迟,这诱导产生了一个具有多重频率的旋转压力波.通过频谱分析发现:脉动的叶顶泄漏流产生的旋转压力波与旋转不稳定性具有一致的频率特性,表明叶顶泄漏流的脉动对压气机中旋转不稳定性的产生具有重要作用.   相似文献   
347.
跨声速风扇转子间隙流动结构分析   总被引:1,自引:0,他引:1  
为探索跨声速转子间隙流动结构,归纳间隙泄漏涡(TLV)和激波相互作用机理,以跨声速转子为研究对象,数值模拟不同间隙下流动特性.此外,着重探究TLV与激波的相互作用,斜激波受到间隙泄漏流的干扰,被削弱打断向上游凹曲;建立三维模型,加深对跨声速叶尖区域流动的全面认识.研究表明:随间隙增大,相同流量下,效率越小,压比也越小;TLV强度更大,偏离吸力面程度增大,沿周向和展向影响范围都越大.压力差提供泄漏流迁移动力,间隙提供泄漏流形成通道.选取h/c=1.0%间隙,随着间隙高度的增大,泄漏流周向运动趋势更明显且二次泄漏现象更剧烈;沿泄漏流方向无量纲流向涡量有少量减少,无量纲螺旋度较高,集中涡特性明显.   相似文献   
348.
大子午扩张变几何涡轮可调叶片端区设计优化   总被引:1,自引:0,他引:1  
提出采用高负荷设计以减少叶片数的方法,增大圆盘直径而减小泄漏面积;结合叶片进行后加载改型措施以减小由于高负荷设计所增加的二次流损失.对定几何涡轮、仅有驱动轴的变几何涡轮与带圆盘型冠的变几何涡轮的流场进行三维数值模拟计算,分析了3种涡轮性能的优劣.结果表明:大间隙尺度下了间隙泄漏涡强度较大,并与通道涡相互融合,从而增大了泄漏损失区域,增加了泄漏损失;而在涡轮叶片由于高负荷设计会增加了主流区的二次流损失.该方法可以有效地减小周向泄漏面积,极大地抑制由大间隙尺度所导致的间隙泄漏涡与通道涡的相互融合,减小泄漏损失.而通过后加载改型的措施,抑制了主流区的通道涡的发展趋势,减小了二次流损失.这两种措施结合后的变几何涡轮具有较高的全工况性能.   相似文献   
349.
魏明  高杰  付维亮  王付凯  郑群 《推进技术》2017,38(9):1921-1929
为了达到减小涡轮叶片叶顶间隙泄露的目的,应用数值模拟并辅之试验的方法对叶顶间隙泄漏流动形成机理、涡轮自适应叶顶喷气控制机理及其对间隙流动的控制作用进行了研究。在此基础上,着重研究了进口位置、出口位置、喷气孔直径等自适应叶顶喷气孔参数以及叶顶间隙大小,对叶顶喷气效果的影响规律。结果表明:自适应叶顶喷气孔进口位置对叶顶喷气性能影响不大;出口位置在叶顶中部,靠近压力面时,叶顶喷气效果最佳;喷气孔直径为2mm(d/H=4.8%相对叶高)时效果较好;叶顶间隙越大,叶顶喷气效果越差,当间隙取到2mm(t/H=4.8%相对叶高)时,叶顶喷气已经失去控制间隙泄漏的作用了。  相似文献   
350.
叶冠齿数和齿顶间隙对涡轮气动性能的影响   总被引:1,自引:0,他引:1  
通过数值方法对某1.5级带冠涡轮的流场进行研究,对比分析了不同叶冠齿数和齿顶间隙对涡轮气动性能的影响.研究结果表明,泄漏流与主流掺混后形成一个涡流区,改变了叶栅上半通道的流场结构,使得顶部流体以负攻角进入下级静叶,造成攻角损失,改变了下级静叶的气动性能.同时发现间隙相对于齿数对涡轮气动性能的影响程度更为显著,间隙相同,齿数从1增加到4时,涡轮效率增加0.75%;齿数相同,间隙从2mm减小到0.5mm时,涡轮效率增加1.82%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号