首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   753篇
  免费   316篇
  国内免费   41篇
航空   734篇
航天技术   87篇
综合类   38篇
航天   251篇
  2024年   15篇
  2023年   22篇
  2022年   30篇
  2021年   31篇
  2020年   26篇
  2019年   41篇
  2018年   26篇
  2017年   23篇
  2016年   34篇
  2015年   28篇
  2014年   36篇
  2013年   38篇
  2012年   55篇
  2011年   45篇
  2010年   50篇
  2009年   43篇
  2008年   54篇
  2007年   36篇
  2006年   40篇
  2005年   26篇
  2004年   33篇
  2003年   30篇
  2002年   23篇
  2001年   33篇
  2000年   20篇
  1999年   23篇
  1998年   33篇
  1997年   23篇
  1996年   30篇
  1995年   26篇
  1994年   18篇
  1993年   16篇
  1992年   21篇
  1991年   23篇
  1990年   16篇
  1989年   11篇
  1988年   11篇
  1987年   8篇
  1986年   5篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有1110条查询结果,搜索用时 15 毫秒
91.
为了研究燃油以及入口空气压力对于贫油熄火(LBO)边界的影响大小及规律,采用航空煤油(RP-3)、高沸点费托油(FT)和柴油进行了三种不同燃烧室入口压力工况下的贫油熄火实验并进行规律分析。分析结果表明:入口压力对贫油熄火边界的影响(19.17%)要大于燃油性质造成的影响(6.26%)。导致熄火油气比变化的主要因素包括入口空气压力,火焰体积,燃烧室温度,燃油雾化直径以及燃油的热值和密度,其中火焰体积和燃油雾化直径主要受燃油性质影响,而燃烧室温度则与入口压力有很大关系。入口压力影响的贫油熄火油气比变化会受其影响的火焰体积和燃烧室温度变化而削弱。碳数高支链烷烃含量少的燃油可能会提高火焰体积对熄火油气比的影响,使其在低入口压力下有更好的贫油熄火边界。   相似文献   
92.
为了探究硼笼化合物对液固凝胶型高能燃料的点火及燃烧性能的影响,采用高密度碳氢燃料MCRI-1、辅助分散剂胶凝剂和纳米铝粉为原料,制备了系列含铝液固凝胶型高能燃料(简称含铝高能燃料),并考察了含铝高能燃料的组成对其分散稳定性(即凝胶成型效果)的影响。在此基础上,考察了三种硼笼化合物对含铝高能燃料的密度、热值、点火及燃烧性能的影响。结果表明,提高胶凝剂含量或固液质量比(Al/MCRI-1)均可提高含铝高能燃料的分散稳定性。含铝高能燃料的密度和体积热值随着硼笼化合物的添加略有降低,但其质量热值在添加硼笼T和硼笼A后分别增加了11.6%和12.4%。硼笼化合物可将含铝高能燃料的燃温峰值提高21.1%~52.9%,点火延迟缩短44.5%~65.2%。硼笼化合物明显改善了含铝高能燃料的点火及燃烧性能。整体上,硼笼A添加效果最佳,且热解及燃烧可产生较多的气体,一定程度上增强了含铝高能燃料的膨胀做工能力。  相似文献   
93.
张捷  周文杰  杨晓奕 《航空动力学报》2018,33(11):2620-2625
为了推进替代燃料的多元化,扩大航空燃料的组分分布。以标准航空煤油为基准,研究了柴油和高沸点费托油对燃烧室贫油熄火边界的影响。实验采用单头部燃烧室,通过改变燃烧室进出口压力,研究其熄火边界的变化规律,并分析了其与理化性质和组成的关联关系。结果显示在220kPa的出口压力下,航空煤油的熄火性能略优于另外两种燃油,高沸点费托油相比航空煤油熄火边界窄5%,而在140kPa的低压条件下,高沸点费托油的熄火边界相比航空煤油拓宽了8%。分析得到整体上低沸点烷烃和直链烷烃的熄火性能较好。   相似文献   
94.
建立了基于航空煤油重整固体氧化物燃料电池-涡轮发动机(SOFC-GT)混合动力系统仿真模型,比较了两种回热方式的重整装置以及不同涡轮布置位置时的系统性能变化,优选出最佳的混合动力系统架构。进一步分析了压气机压比、燃料利用率、燃油流量以及空气流量等运行参数对SOFC-GT混合动力系统性能的影响。研究结果表明:设计点工况下,最佳混合动力系统的发电效率能达到45%,体现出良好的系统性能;当燃料利用率为082时混合动力系统的效率和功率最高;随着燃油流量(0051 1~0058 4 mol/s)的增加,混合动力系统的效率和功率均增加;而随着压气机压比(25~33)或者空气流量(37~44 mol/s)的增加,混合动力系统的效率和功率都减小。  相似文献   
95.
陈其盛  窦志国  李兰  祝超 《推进技术》2015,36(10):1533-1538
为研究煤油的点火特性,在反射型激波管中测量了煤油及替代燃料的点火延迟时间。通过测量激波压力信号和OH自由基光强信号,分析了点火温度、当量比对煤油点火延迟时间的影响。实验温度范围为1100~1800K,压力为0.1MPa,反应当量比为0.5,1.0,1.5。选用正癸烷(80%)和三甲基苯(20%)组成的替代燃料,在相同实验条件下比较了替代燃料对煤油点火模拟的准确性。结果表明随着点火温度升高和当量比的降低,煤油及其替代燃料的点火延迟时间缩短,点火延迟时间的对数与温度倒数成正比。选定的替代燃料可以较好地模拟实际煤油的点火延迟过程。  相似文献   
96.
基于扩展TAB模型的凝胶液滴二次雾化特性研究   总被引:3,自引:2,他引:3       下载免费PDF全文
邓寒玉  封锋  武晓松  卓长飞  曹琪  杨绪钊 《推进技术》2015,36(11):1734-1740
为初步研究幂率型凝胶液滴的二次雾化特性,将原始的Taylor-analogy-breakup(TAB)模型扩展并应用到幂率型凝胶颗粒中,采用四阶Runge-Kutta法对凝胶液滴的振荡方程和运动方程进行了数值求解,计算了不同空气动力和物性参数条件下的初始破碎时间和临界特征。结果表明:随着相对速度和液滴直径的增加,初始破碎时间迅速降低,然后保持稳定;随液/气密度比和表面张力系数增大,初始破碎时间呈线性增长趋势;初始破碎时间随稠度系数增大而增大,而当流动指数较小时初始破碎时间变化很小,流动指数超过0.6后初始破碎时间增长迅速,二者与相关实验比较存在一定误差;随Web数增大,液滴的振荡幅度变大,达到稳定后其无量纲变形系数就越大;凝胶液滴的稠度系数越高,临界Webc数越大,液滴二次雾化能力越低。流动指数小于0.6时,临界Webc数变化较小,而后其值则迅速上升。  相似文献   
97.
李浩  朱宝忠  孙运兰 《推进技术》2015,36(12):1901-1908
为改善铝/冰燃料的点火燃烧性能,通过添加不同比例的镁粉制备成铝/冰基燃料,研究其对铝/冰燃料燃烧特性的影响。实验通过接触法测得铝/冰基燃料燃烧温度并采用高速摄影系统观测其燃烧现象。研究结果表明,铝/冰燃料中添加镁粉后在100~200℃即出现较为明显的氧化放热反应,镁粉可以明显降低铝/冰基燃料的起始反应温度,加快反应速率。在稳定燃烧阶段,随着镁粉添加量的增加,铝/冰基燃料燃烧剧烈程度降低。通过对燃烧产物的分析发现,添加镁粉后的燃烧产物形貌与未添加镁粉的产物形貌存在明显差别,且未完全反应的铝粉含量较多,燃烧相对不充分。  相似文献   
98.
论证了吸热型碳氢燃料与高温合金相容性研究过程,设计了燃油与高温合金联合加热装置,测试了非钝化和钝化状态的GH625试件和GH3128试件在壁温为500~850℃时、经过燃油压力为3.5MPa、燃油温度为450~500℃、流速为1~5m/s浸渍后的力学性能和金相组织.试验结果表明:在燃料温度为500℃、试件温度为850℃时,GH3128试件结焦量少于GH625试件,GH3128试件的塑性应力下降40%、GH625试件的塑性应力下降60%.燃油浸渍时高温合金钝化后结焦量明显减少.   相似文献   
99.
石超  强洪夫  刘虎  付幼明 《推进技术》2018,39(1):203-211
雾化是凝胶推进技术的关键问题之一,雾化过程中的液膜、液丝及液滴等的速度分布、液膜厚度等参数对于判断雾化效果、揭示雾化机理具有重要作用。为了对含碳颗粒凝胶推进剂雾化场的速度进行定量分析,提出了一种基于SIFT关键点匹配的雾化场速度计算方法,并以雾化场速度分析为基础,提出了一种新的液膜厚度估算方法。结果表明:雾化场速度随射流速度的增大而增大,随撞击角度的增大而减小;雾化场平均速度与射流速度的比值vato/vjet在0.6~0.9,可用于表征雾化效果,vato/vjet越小,雾化效果越好;射流撞击形成液膜的厚度在0.04~0.13mm,液膜厚度随着射流速度及撞击角度的增大而减小;凝胶推进剂的雾化效果随着碳颗粒浓度的增大而降低,随着碳颗粒粒径的增大而略有改善。  相似文献   
100.
吸气式发动机燃料研究进展及展望   总被引:1,自引:0,他引:1       下载免费PDF全文
针对航天吸气式发动机的发展趋势,分析了其对燃料能量密度、热沉、点火及燃烧等关键性能的要求。总结评述了国内外燃料性能改善的多种技术途径,如通过合成新型液体燃料和添加含能粒子提高燃料能量,借助添加剂和催化反应提高燃料热沉,通过设计合成高反应性燃料分子和借助高活性添加剂缩短点火延迟和提高燃烧效率的技术途径等。提出了满足吸气式发动机近期及中期发展目标的燃料体系,包括积净热值达到60MJ/L的高能量密度燃料,满足长时间运行马赫5~6,马赫7~8,组合动力预冷发动机及马赫数9飞行的燃料。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号