首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1731篇
  免费   387篇
  国内免费   406篇
航空   1741篇
航天技术   187篇
综合类   254篇
航天   342篇
  2024年   27篇
  2023年   105篇
  2022年   122篇
  2021年   126篇
  2020年   103篇
  2019年   114篇
  2018年   59篇
  2017年   103篇
  2016年   110篇
  2015年   77篇
  2014年   102篇
  2013年   84篇
  2012年   96篇
  2011年   131篇
  2010年   88篇
  2009年   106篇
  2008年   106篇
  2007年   114篇
  2006年   72篇
  2005年   59篇
  2004年   54篇
  2003年   68篇
  2002年   59篇
  2001年   56篇
  2000年   50篇
  1999年   54篇
  1998年   43篇
  1997年   32篇
  1996年   27篇
  1995年   26篇
  1994年   20篇
  1993年   34篇
  1992年   26篇
  1991年   22篇
  1990年   21篇
  1989年   22篇
  1988年   3篇
  1985年   2篇
  1984年   1篇
排序方式: 共有2524条查询结果,搜索用时 15 毫秒
171.
缺口会导致严重的应力集中,并降低结构的使用寿命,研究缺口部位的低周疲劳寿命具有重要意义。基于弹塑性全量理论建立30CrMnSiA材料的弹塑性本构关系,采用损伤力学-有限元法预测30CrMnSiA材料缺口试样的低周疲劳寿命,并与相应的试验结果进行对比。结果表明:基于弹塑性全量理论建立的弹塑性本构关系方法合理,采用损伤力学方法得到的疲劳寿命预测结果基本满足工程实际要求,该方法可用来对30CrMnSiA缺口试样进行低周疲劳寿命预测。  相似文献   
172.
为解决普通加工方式易出现工程陶瓷边缘碎裂的问题,本文对超声内圆磨削工程陶瓷边界损伤预测系统进行了研究。在35 kHz轴向超声磨削与普通磨削两种条件下独立进行试验,运用支持向量机研究工艺参数与边界损伤影响规律,采用改进的粒子群算法优化支持向量机,建立采用混合核函数的AHPSO-SVM预测模型。研究结果表明,超声激励下试件边界损伤降幅为10.05%~21.23%,AHPSO-SVM预测模型MSE为0.378 4、平均相对误差为1.369 0%、30次适应度值标准差为0.020 2。相比于普通磨削,超声磨削可使ZTA陶瓷边界损伤值显著降低;建立的AHPSO-SVM模型具有较好的学习能力、泛化性能与良好的稳定性。  相似文献   
173.
针对带有中央翼盒的某型飞机的机身,数值研究了不同入水速度、姿态角和尾翘角对入水过程中机身压强和冲击力的影响规律。数值模拟中,控制方程选为非定常可压缩流动的雷诺时均Navier-tokes方程(RANS)和实现的k-ε模型,使用体积分数(VOF)方法捕捉水气交界面的变化,采用整体动网格技术来模拟机身相对于水面的运动。结果分析表明:机身入水过程中压强峰值首先出现在喷溅根部,随后转移至机身底部;入水初期机身冲击力系数迅速增大,而后略有回落,入水后期由于中央翼盒冲击水面会导致冲击力系数再次迅速增大,而后小幅震荡。速度越大、姿态角越大、尾翘角越小,机身冲击力系数越小。  相似文献   
174.
为研究航空发动机机匣在高温下的包容性能力,通过实验和数值模拟研究25℃和600℃下GH4169合金薄板受球型子弹冲击后的变形行为。弹道冲击实验通过轻气炮实施,子弹以不同初始速率冲击靶板。分析温度和冲击速率对靶板的变形、临界击穿速率、破坏变形模式以及能量吸收的影响。结果表明:高温下靶板的变形更大,靶板被击穿所吸收的能量更小,临界击穿速率更小;高温下靶板被穿透后由弯曲作用引起的花瓣状变形更明显。数值模拟研究通过有限元软件LS-DYNA实施,数值模拟中选用Johnson-Cook本构模型。采用高温分离式霍普金森压杆(SHPB)实验技术对GH4169高温合金进行测试,获得了材料在高温高应变率下的力学特性并拟合了Johnson-Cook本构模型参数。数值模拟研究的结果和实验结果进行了对比,显示了良好的一致性。  相似文献   
175.
为了研究复合材料雷击防护(lightning strike protection,LSP)系统在雷电流作用下的损伤规律,基于雷击过程中的能量守恒关系,建立复合材料层合板雷击防护的电-热耦合数学模型。在此基础上,在ABAQUS中建立铝涂层防护的碳纤维增强复合材料(carbon fiber reinforced polymer,CFRP)层合板雷击烧蚀损伤有限元模型,并对雷击烧蚀损伤进行分析,和实验结果对比验证仿真的有效性,得出复合材料层合板在不同峰值雷电流、不同组合波形和不同铝涂层厚度雷电流作用下的烧蚀损伤规律。结果表明:铝涂层厚度相同时,峰值电流从50kA 增大到100kA时,复合材料层合板损伤面积约增大 1.5 倍;10/350波形50 kA峰值雷电流作用下,基准件的损伤面积约为0.05 mm厚度铝涂层防护系统下复合材料损伤面积的4倍。  相似文献   
176.
在分析复合材料构件成型和制孔过程中产生缺陷的基础上,从构件成型质量、连接孔加工质量和连接孔配合质量3个方面研究了影响装配应力分布的主要因素及其影响规律。研究发现,装配间隙为1.0mm时,连接区最大应力可达537MPa;垂直度误差为1°时,连接区最大应力超过300MPa;连接孔同轴度误差为0.03mm时,连接区最大应力可达443MPa。装配应力过大引起材料内部成型缺陷和制孔损伤的进一步扩展,形成二次损伤,严重影响装配质量。通过合理设计结构和铺层、优化成型工艺和制孔参数,可以减少初始损伤;采用自动化装配技术、优化工装结构、合理安排装配工序和应用填隙补偿工艺降低装配应力,进而有效抑制二次损伤的诱发与扩展,为实现大型复合材料承力构件的高质量精准连接装配提供理论方法和技术支持。  相似文献   
177.
民机复合材料结构在服役过程中的损伤主要来源于意外冲击,会大幅度降低结构强度,影响飞机安全.以某型飞机外翼为例,考虑运行过程中意外冲击损伤的产生、载荷超限和维护过程中损伤的漏检等因素,采用概率分析方法对结构失效概率进行分析,并计算详细目视检测方法对应的检修间隔.结果表明,计算得到的检修间隔略大于工程实际中"4C"值.此概率分析方法用来确定复合材料结构件检修间隔是可行的,并可以实现检修间隔的动态化调整.  相似文献   
178.
以实现多部位疲劳结构的寿命预测为目的,基于概率累积损伤法则,推导了基于寿命服从对数正态分布的概率疲劳寿命预测方法。根据损伤临界值与应力水平无关这一前提条件,将损伤临界值由传统确定性的值1转换为随机变量,累积损伤由确定性的中值损伤计算,建立了"中值累积损伤-概率损伤临界值"干涉模型。当对数寿命标准差恒定时,对比了所提出模型和基于Monte Carlo仿真的Miner累积损伤方法的寿命预测结果,验证了模型的准确性以及其方便快捷的优点;当对数寿命标准差变化时,损伤临界值由满足损伤等效的应力基准决定,此时亦可得到高精度的偏于安全的寿命预测结果。  相似文献   
179.
顾志旭  郑坚  彭威  支建庄 《推进技术》2018,39(2):396-403
为建立复合固体推进剂的损伤本构模型,基于不可逆热力学和叠加原理,通过引入宏观损伤效应张量,推导出一个通过有效应力表征损伤的蠕变型损伤本构方程。假设材料为初始各向同性,进一步引入细观标量损伤效应函数表征材料对称性的改变,进而得到由细观损伤效应函数表征宏观损伤效应张量的一般表达式。通过选取合适的细观损伤效应函数,文中建立的本构方程可以用于表征材料的正交各向异性损伤、横观各向同性损伤和各向同性损伤。最后,基于Schapery粘弹性微裂纹扩展模型,选取相对微裂纹密度为损伤内变量,建立了一个由损伤热力学对偶力表征的幂律型损伤演化方程。数值结果表明,建立的模型能够较好地反映材料损伤的率相关性和温度依赖性,具有良好的预测精度。  相似文献   
180.
针对TC4钛合金风扇/压气机叶片前缘常遭受的外物损伤(FOD)缺口型损伤,进行了不同冲击角度下高速弹道冲击试验研究、损伤特征与应力集中分析,开展了冲击后不处理和冲击后去残余应力退火试样的高循环疲劳试验和疲劳极限强度预测。结果表明:随着冲击角度的增大入射侧损伤尺寸和应力集中系数基本保持不变,出射侧缺口损伤深度和损伤长度减小。损伤深度范围为0.6~1.5mm,应力集中系数范围为2.6~3.4。缺口型损伤试样的疲劳极限强度下降为光滑试样的27%~53%,与应力集中系数并不是呈反比关系。退火试样的高循环疲劳(HCF)性能或略微下降或基本不变,表明残余应力影响较小,残余应力对疲劳极限强度的影响程度不足光滑试样的10%。缺口型损伤试样的HCF性能与损伤底部半径的相关性不明显,随着最大损伤深度和损伤长度的增加而下降,表明制定维修手册时应着重考虑缺口型损伤的最大深度和损伤长度。Peterson经验公式对HCF性能的预测精度不理想,误差最大为45%,需要发展高精度的FOD缺口型损伤构件HCF性能预测方法。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号