首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   6篇
  国内免费   3篇
航空   23篇
航天技术   7篇
综合类   4篇
航天   3篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有37条查询结果,搜索用时 125 毫秒
31.
郑权  翁春生  白桥栋 《推进技术》2015,36(6):947-952
为了研究液态燃料连续旋转爆轰波起爆机理和不同工况下的旋转爆轰波特性,采用了环形阵列式精细雾化装置,进行了汽油/富氧空气组合的连续旋转爆轰试验。试验成功起爆并实现了旋转爆轰波的自持传播,爆轰波传播频率为2.1~2.4k Hz,传播速度为1022.2~1171.8m/s。该发动机上旋转爆轰波始终为同向传播模态,存在单波头、双头波和多波头同时存在的混合传播模态,旋转爆轰波传播速度存在亏损。试验工况范围内,旋转爆轰波的传播速度随总推进剂的质量流量增大而增加;在一定工况范围内,同一当量比工况下,旋转爆轰波压力值随总推进剂的质量流量增大而增加;旋转爆轰波压力极大值出现在当量比1.1附近。  相似文献   
32.
卫星姿控发动机混合物羽流场分区耦合计算研究   总被引:2,自引:0,他引:2  
研究求解喷管内流场N-S方程数值计算方法,发展基于N-S方程物面边界滑移流理论计算技术。提出求解羽流核心区轴对称DSMC模拟方法与远场三维DSMC仿真方案,发展多组元混合物羽流DSMC仿真方法。研究求解卫星姿控发动机内外近场、远场、倒流区和物面相互作用影响区多流域流场分区耦合计算技术,建立了一套用于求解混合物燃气羽流及对太阳电池帆板与卫星体表面撞击污染影响数值模拟方法。通过对分别安装于某在轨卫星不同位置两个典型姿控发动机燃气五组元混合物羽流计算研究及相关结果对比分析,证实本文数值方法可靠性。  相似文献   
33.
两相流乳化型细水雾喷嘴雾化特性研究   总被引:1,自引:0,他引:1  
为了研究消防领域细水雾灭火系统的关键部件--细水雾喷嘴的雾化结构形式,以空气和水为介质,利用马尔文激光粒度分析仪对两相流乳化型细水雾喷嘴的雾化特性进行了详细的研究.分析了该型喷嘴的工作特点,研究了不同供水压力、供气压力及气液比对喷嘴雾化特性的影响,为细水雾灭火系统及其喷嘴的设计方法和检验标准提供了依据.试验结果表明:该结构喷嘴的雾化性能完全满足细水雾灭火系统的性能要求.  相似文献   
34.
采用激波风洞-微波管组合设备对顶混的碳氢燃料-空气混合物的点火与超声速燃烧进行了研究。为缩短碳氢燃料-空气混合物的点火延迟时间,通过激波风洞喷管入口与接触面之间的激波反射对经过雾化与气化的碳氢燃料(汽油)进行预热;此外,由燃烧驱动激波管产生的高温燃气作为引导火焰点燃激波风洞产生的预混与预热的超声速碳氢燃料-空气混合物。采用纹影系统对超声速可燃气流中的火焰传播进行流场显示。实验结果表明,上述方法可将碳氢燃料-空气混合物的点火延迟时间缩短至小于0.2ms,同时还得出了火焰相对于超声速可燃气流的传播速度。  相似文献   
35.
除冰指除去飞机表面附着的霜、冰、雪的工作程序,主要采用热水,或热水与除冰液的混合物进行清洁,也可通过红外加热或热空气加热等方法除冰。防冰指在限定时间内防止飞机表面形成凝霜、结冰和积雪的预防程序。  相似文献   
36.
为研究低温推进剂的常压停放过程,设计了可视化液氮贮箱实验系统。实验中研究充填率和环境温度对液氮汽化量的影响,并测量贮箱内流体和贮箱外壁面的温度随时间和位置的变化。实验得出贮箱常压停放过程,相变主要在壁面和气液界面产生,并且气枕区存在温度分层,距出口位置越近温度越高;而液体区温度基本一致,处于饱和状态。贮箱外壁面在轴向的温度分布显著不同,处于液体区壁面温度低。运用分子动力学推导出的Hertz-Knudsen公式作为气液相变的传热传质源项,并据实验测得温度边界条件,采用混合物模型对贮箱常压停放状态进行30 min的数值仿真。仿真得到结果显示体积汽化速率与实验数据的偏差在5%以内,液体区的温度仿真与实验的偏差在0.15 K左右。   相似文献   
37.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号