首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4589篇
  免费   804篇
  国内免费   384篇
航空   3260篇
航天技术   720篇
综合类   635篇
航天   1162篇
  2024年   49篇
  2023年   180篇
  2022年   190篇
  2021年   243篇
  2020年   251篇
  2019年   220篇
  2018年   118篇
  2017年   161篇
  2016年   177篇
  2015年   163篇
  2014年   228篇
  2013年   196篇
  2012年   227篇
  2011年   251篇
  2010年   198篇
  2009年   233篇
  2008年   231篇
  2007年   256篇
  2006年   223篇
  2005年   182篇
  2004年   177篇
  2003年   188篇
  2002年   161篇
  2001年   146篇
  2000年   120篇
  1999年   104篇
  1998年   107篇
  1997年   120篇
  1996年   99篇
  1995年   92篇
  1994年   86篇
  1993年   76篇
  1992年   73篇
  1991年   44篇
  1990年   64篇
  1989年   48篇
  1988年   27篇
  1987年   19篇
  1986年   13篇
  1985年   12篇
  1984年   4篇
  1983年   7篇
  1982年   3篇
  1981年   6篇
  1980年   4篇
排序方式: 共有5777条查询结果,搜索用时 15 毫秒
171.
不同进口截面下液力透平非定常压力脉动计算   总被引:1,自引:1,他引:0  
为了研究不同进口截面对液力透平内压力脉动的影响,利用CFX软件对一单级液力透平进行非定常数值计算,通过设置监测点,计算各监测点在不同进口截面下的压力脉动,通过快速傅里叶变换将其压力脉动计算结果做相应分析,分析各监测点处压力脉动的时域和频域分布.结果表明:蜗壳内在大蜗壳进口下,随着蜗壳进口直径的增加,每个监测点处的压力逐渐增加,而在小蜗壳进口下,每个监测点处的压力逐渐减小.在距离蜗壳收缩管较远处,大蜗壳进口下的压力脉动较小,而在距离收缩管较近处,小蜗壳进口下的压力脉动较小.在叶轮内不同进口截面压力脉动的差异在同一时刻从进口到出口逐渐减小.尾水管内在小蜗壳进口下尾水管进口处的压力脉动最大.   相似文献   
172.
钟兢军  魏曼 《推进技术》2016,37(5):892-899
为了控制和降低涡轮动叶由叶顶间隙所引起的泄漏损失,对加装不同宽度压力面小翼的涡轮叶栅间隙流场进行了实验研究,详细测量了±10°,±5°,0°冲角时涡轮叶栅出口流场和叶片表面静压分布情况。结果表明:随来流冲角由负到正,泄漏涡强度减弱,泄漏损失降低;通道涡强度增强,其引起的损失增大。压力面小翼在不同冲角下均对叶顶泄漏流动具有一定的控制作用,在设计冲角和较小的正冲角工况下PW0.3方案压力面小翼作用效果较好,分别使叶栅总损失降低10.38%和8.11%。在冲角变化范围更大时,PW0.4方案压力面小翼效果更好。  相似文献   
173.
许海雨  罗凯  刘富强  左振浩  古鉴霄  黄闯 《推进技术》2020,41(11):2623-2629
固体火箭发动机具有功率密度大、推力大等优势,常被用于上浮水雷的推进器。然而发动机在水下工作时燃气射流使流场压力发生剧烈脉动,进而影响发动机的推力性能及上浮水雷的受力特性。基于VOF多相流模型和理想气体模型,建立了上浮水雷在不同工作状态(欠膨胀、完全膨胀、过膨胀)下的数值模型,研究了水下燃气喷射流对上浮水雷的受力特性影响。结果显示,欠膨胀工况时,发动机推力平缓,大小为12.2KN,上浮水雷受力未出现负值;完全膨胀时,射流发生颈缩、胀鼓现象位置距离雷体较远,导致发动机推力及水雷壳体受力振荡不剧烈;过膨胀工况时,射流发生颈缩、胀鼓现象距离喷管较近,发动机推力发生剧烈脉动,产生21.37%的振荡幅度,胀鼓现象发生时,流场压力显著降低使得上浮水雷后体受力减小,壳体阻力增大,上浮水雷最大产生27KN的负推力。  相似文献   
174.
在飞机大型构件测量领域,针对测量设备自动化转站时存在移动机器人无法准确到达站位的问题,提出了采用基于人工地标的移动机器人定位与调整技术实现转站时的精确定位。其次,设计了一种人工地标,给出使用激光跟踪仪的地标标定工装以及标定方法,通过该方法可得到地标在全局坐标系下的坐标。同时,介绍了地标的编码与位姿的解算方法,以及移动机器人位姿调整策略。最后,试验表明,人工地标测量的位置和角度误差均较小,移动机器人通过人工地标的定位与调整后的精度可以满足自动化转站的精度要求。  相似文献   
175.
空客A330飞机发动机引气系统失效时有严重的运行限制,影响航班运行,导致飞机可用率降低。本文通过对A330飞机发动机引气系统工作原理进行研究,对典型历史故障数据进行分析,计算关键重要度,总结排故方法,并在飞机运行中进行重点故障的监控,可有效提高排故效率、缩短排故时间。  相似文献   
176.
针对5 kN发动机结构焊缝和复合材料喷管不可检不可测的难题,开展了工业CT检测技术研究。分析了复杂结构焊缝和复合材料喷管的常规方法检测难点,利用工业CT检测技术穿透能力强、不受工件复杂结构影响的优势,对5 kN发动机产品中的电子束焊缝、氩弧焊焊缝、复合材料喷管等结构进行了检测试验,得到了良好的检测效果。结果表明,工业CT检测技术可以识别5 kN发动机产品中的气孔、未焊透、分层、裂纹等缺陷,并实现对缺陷的定位与测量,可为焊缝质量评估提供依据。  相似文献   
177.
展向振荡对激波/湍流边界层干扰的影响   总被引:2,自引:2,他引:0  
孙东  刘朋欣  童福林 《航空学报》2020,41(12):124054-124054
周期振荡作为一种有效的壁面流动控制手段受到广泛关注,而其对激波/湍流边界层干扰的影响目前鲜有研究。本文采用高精度直接数值模拟(DNS)方法对马赫数2.9、12°激波入射角、强振荡下的激波/湍流边界层干扰进行了系统研究。通过与无振荡工况的定量比较,揭示了展向强振荡对干扰区内复杂流动结构的影响规律及作用机制,如分离泡尺度、物面压力脉动非定常特性、物面剪切的非定常特性及统计特征等。研究发现:在展向强振荡作用下,分离点位置提前,间歇区长度增大;同时由于分离泡内强黏性耗散的影响,展向振荡的穿透高度约为分离泡高度的4%,因而对流动结构不会产生实质影响。但展向强振荡会对壁面附近流动造成显著影响,如强振荡诱导的壁面展向速度远大于流向速度,造成流向剪切与展向剪切之间夹角的概率密度函数峰值从0°偏移到80°~90°之间。物面压力及剪切本征正交分解分析表明,展向振荡会导致模态能量从低阶模态向高阶模态转移,降低低频运动的能量占比,增强再附后Görtler涡等壁面附近旋涡结构的强度。  相似文献   
178.
陈苏宇  江涛  常雨  胡守超  李强  张扣立 《航空学报》2020,41(12):124098-124098
为研究高超声钝头体边界层转捩以及头部钝度对转捩的影响,在FD-14和FD-14A两座激波风洞中开展了热流、压力扰动和高速纹影显示等综合测量。试验结果表明,转捩雷诺数关于钝度雷诺数的变化显示出转捩反转的趋势。压力扰动的功率谱密度(PSD)分析结果以流向离散分布云图形式显示,边界层高速纹影图像显示了第二模态波的发展、湍流的生成和熵层对边界层结构的显著影响。大头部钝度带来的强熵梯度熵层流动对边界层压力扰动频谱特性和流动结构影响显著,在转捩反转机理中起到重要作用。此外,马赫数对转捩的影响不容忽视。  相似文献   
179.
应用压力敏感漆技术,在平板上测量了不同主流攻角(i=-30°,-20°,-10°,0°,10°,20°,30°)下双射流孔的气膜冷却效率,并利用计算流体动力学(CFD)计算得到的流场对气膜冷却效率的规律进行了解析。所研究的双射流孔结构的孔间无量纲横向距离为0.5,孔间无量纲流向距离为3;射流与主流密度比为1.0,吹风比分别为0.5、1.0、1.5、2.0。结果表明小的主流攻角(i=-10°,0°,10°)下,流场中存在反肾型涡对或挤压作用,气膜层与壁面贴附良好,气膜冷却效率最高;大正值攻角(i=20°,30°)下,虽然气膜覆盖面积大,但反肾型涡对退化,气膜冷却效率下降;大负值攻角(i=-20°,-30°)下,流场中有肾型涡对,且气膜横向覆盖受限,气膜冷却效率最低。  相似文献   
180.
卫星接收机自主完好性监测是指根据用户接收机的多余观测值监测用户定位结果的完好性,其目的是在导航过程中检测出发生故障的卫星,并保障导航定位精度。针对卫星接收机自主完好性监测算法可用性不足的问题,结合机载实际导航系统配置,提出了一种基于气压高度表辅助的机载自主完好性监测算法。综合利用卫星导航系统及气压高度表观测信息,建立联合系统的观测模型,推导了基于多解分离的完好性监测及保护级别计算方法。仿真结果表明,相比于传统的接收机自主完好性监测算法,该算法在可见星为5颗时仍能识别故障卫星。该算法具有更好的故障检测能力及可用性,能有效提高卫星导航系统的完好性监测性能,从而保证卫星导航系统的精度和可靠性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号