首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   859篇
  免费   31篇
  国内免费   19篇
航空   417篇
航天技术   228篇
综合类   151篇
航天   113篇
  2023年   20篇
  2022年   1篇
  2021年   4篇
  2020年   16篇
  2019年   15篇
  2018年   9篇
  2017年   4篇
  2016年   5篇
  2015年   3篇
  2014年   75篇
  2013年   44篇
  2012年   60篇
  2011年   57篇
  2010年   25篇
  2009年   41篇
  2008年   64篇
  2007年   80篇
  2006年   47篇
  2005年   47篇
  2004年   20篇
  2003年   25篇
  2002年   20篇
  2001年   49篇
  2000年   15篇
  1999年   7篇
  1998年   21篇
  1997年   4篇
  1996年   15篇
  1995年   14篇
  1994年   62篇
  1993年   22篇
  1992年   11篇
  1990年   1篇
  1989年   2篇
  1984年   4篇
排序方式: 共有909条查询结果,搜索用时 218 毫秒
271.
We discuss millisecond period brightness oscillations and surface atomic spectral lines observed during type I X-ray bursts from a neutron star in a low mass X-ray binary system. We show that modeling of these phenomena can constrain models of the dense cold matter at the cores of neutron stars. We demonstrate that, even for a broad and asymmetric spectral line, the stellar radius-to-mass ratio can be inferred to better than 5%. We also fit our theoretical models to the burst oscillation data of the low mass X-ray binary XTE J1814-338, and find that the 90% confidence lower limit of the neutron star’s dimensionless radius-to-mass ratio is 4.2.  相似文献   
272.
Clusters of galaxies are self-gravitating systems of mass ∼1014–1015 h −1 M and size ∼1–3h −1 Mpc. Their mass budget consists of dark matter (∼80%, on average), hot diffuse intracluster plasma (≲20%) and a small fraction of stars, dust, and cold gas, mostly locked in galaxies. In most clusters, scaling relations between their properties, like mass, galaxy velocity dispersion, X-ray luminosity and temperature, testify that the cluster components are in approximate dynamical equilibrium within the cluster gravitational potential well. However, spatially inhomogeneous thermal and non-thermal emission of the intracluster medium (ICM), observed in some clusters in the X-ray and radio bands, and the kinematic and morphological segregation of galaxies are a signature of non-gravitational processes, ongoing cluster merging and interactions. Both the fraction of clusters with these features, and the correlation between the dynamical and morphological properties of irregular clusters and the surrounding large-scale structure increase with redshift. In the current bottom-up scenario for the formation of cosmic structure, where tiny fluctuations of the otherwise homogeneous primordial density field are amplified by gravity, clusters are the most massive nodes of the filamentary large-scale structure of the cosmic web and form by anisotropic and episodic accretion of mass, in agreement with most of the observational evidence. In this model of the universe dominated by cold dark matter, at the present time most baryons are expected to be in a diffuse component rather than in stars and galaxies; moreover, ∼50% of this diffuse component has temperature ∼0.01–1 keV and permeates the filamentary distribution of the dark matter. The temperature of this Warm-Hot Intergalactic Medium (WHIM) increases with the local density and its search in the outer regions of clusters and lower density regions has been the quest of much recent observational effort. Over the last thirty years, an impressive coherent picture of the formation and evolution of cosmic structures has emerged from the intense interplay between observations, theory and numerical experiments. Future efforts will continue to test whether this picture keeps being valid, needs corrections or suffers dramatic failures in its predictive power.  相似文献   
273.
Large-scale structure formation, accretion and merging processes, AGN activity produce cosmological gas shocks. The shocks convert a fraction of the energy of gravitationally accelerated flows to internal energy of the gas. Being the main gas-heating agent, cosmological shocks could amplify magnetic fields and accelerate energetic particles via the multi-fluid plasma relaxation processes. We first discuss the basic properties of standard single-fluid shocks. Cosmological plasma shocks are expected to be collisionless. We then review the plasma processes responsible for the microscopic structure of collisionless shocks. A tiny fraction of the particles crossing the shock is injected into the non-thermal energetic component that could get a substantial part of the ram pressure power dissipated at the shock. The energetic particles penetrate deep into the shock upstream producing an extended shock precursor. Scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are discussed. We show that the multi-fluid nature of collisionless shocks results in excessive gas compression, energetic particle acceleration, precursor gas heating, magnetic field amplification and non-thermal emission. Multi-fluid shocks provide a reduced gas entropy production and could also modify the observable thermodynamic scaling relations for clusters of galaxies.  相似文献   
274.
We briefly review capabilities and requirements for future instrumentation in UV- and X-ray astronomy that can contribute to advancing our understanding of the diffuse, highly ionised intergalactic medium.  相似文献   
275.
In this work we examine the damping of Alfvén waves as a source of plasma heating in disks and magnetic funnels of young solar like stars, the T Tauri stars. We apply four different damping mechanisms in this study: viscous-resistive, collisional, nonlinear and turbulent, exploring a wide range of wave frequencies, from 10−5Ωi to 10−1Ωi (where Ωi is the ion-cyclotron frequency). The results show that Alfvénic heating can increase the ionization rate of accretion disks and elevate the temperature of magnetic funnels of T Tauri stars opening possibilities to explain some observational features of these objects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
276.
现代航空英语构词特点及其发展趋向探析   总被引:1,自引:0,他引:1  
探索了航空英语词汇的构成方式,分析了英语的基本构词特征,试图从构词法和词源的角度找出航空英语科技词汇的构词规律,总结并展望了科技英语词汇的5个特征及其发展趋向。  相似文献   
277.
Since ambient conditions vary in a wide range within the full flight envelope, the existing piecewise linear model (PLM), which is based on sea-level static condition with use of corrected parameters for other points in the flight envelope, cannot meet the accuracy for replacing the nonlinear model. To obtain more accurate linear models, a method of partitioning the flight envelope over a grid of Mach number and altitude boxes was suggested. Then, a set of linear models for a given operating condition was selected by picking the nearest (Mach number, altitude) box in the flight envelope. Through the selected set of linear models, interpolating for power level based on a weighted sum of corrected rotor speeds can obtain a linear model with acceptable accuracy. Simulation results of different points within the full flight envelope showed that the maximum error between nonlinear model and the existing PLM was more than 50%, while the maximum error between nonlinear model and the improved PLM was within 8%. It is concluded that the improved PLM performs accurately, especially under the non-standard conditions. In addition, the improved PLM can satisfy the real-time requirement better than the existing PLM.   相似文献   
278.
某离心式喷嘴雾化特性及优化设计研究   总被引:2,自引:0,他引:2       下载免费PDF全文
喷嘴结构参数、喷油压降和燃油物性对喷嘴雾化特性具有重要影响。采用数值计算和试验手段研究某离心式喷嘴航空煤油和0#柴油雾化特性及差异性,并讨论喷嘴内部流动和喷嘴结构参数对雾化特性的影响。结果表明:数值计算与试验值存在差异,但雾化锥角、流量系数等随压力变化的趋势一致,验证了流体体积函数(VOF)追踪油气两相界面的正确性;喷嘴内部气、液相的涡是内部流动不稳定和气液面波动的原因;几何结构参数对喷嘴雾化特性影响明显;优化后的喷嘴结构,流量系数和雾化锥角分别增大了0.15和0.16倍,而喷嘴出口液膜厚度减小了0.53倍,明显改善了该喷嘴的雾化质量。  相似文献   
279.
We have measured the isotopic abundances of neon and a number of other species in the galactic cosmic rays (GCRs) using the Cosmic Ray Isotope Spectrometer (CRIS) aboard the ACE spacecraft. Our data are compared to recent results from two-component (Wolf–Rayet material plus solar-like mixtures) Wolf–Rayet (WR) models. The three largest deviations of galactic cosmic ray isotope ratios from solar-system ratios predicted by these models, 12C/16O, 22Ne/20Ne, and 58Fe/56Fe, are very close to those observed. All of the isotopic ratios that we have measured are consistent with a GCR source consisting of ∼20% of WR material mixed with ∼80% material with solar-system composition. Since WR stars are evolutionary products of OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of our data with WR models suggests that OB associations within superbubbles are the likely source of at least a substantial fraction of GCRs. In previous work it has been shown that the primary 59Ni (which decays only by electron-capture) in GCRs has decayed, indicating a time interval between nucleosynthesis and acceleration of >105 y. It has been suggested that in the OB association environment, ejecta from supernovae might be accelerated by the high velocity WR winds on a time scale that is short compared to the half-life of 59Ni. Thus the 59Ni might not have time to decay and this would cast doubt upon the OB association origin of cosmic rays. In this paper we suggest a scenario that should allow much of the 59Ni to decay in the OB association environment and conclude that the hypothesis of the OB association origin of cosmic rays appears to be viable.  相似文献   
280.
We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700–2050 Å spectral band with a spectral resolution between 8 Å and 12 Å for extended sources that fill its ~0.05^ × 6.0^ field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a toroidal concave holographic reflection grating. The microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a two-dimensional delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus, and nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the mission's two asteroid flyby targets and of Mars, its moons, and of Earth's moon. ALICE has already successfully completed the in-flight commissioning phase and is operating well in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet C/2002 T7 (LINEAR) in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaign.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号