首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   45篇
  国内免费   309篇
航空   919篇
航天技术   52篇
综合类   185篇
航天   25篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   18篇
  2020年   28篇
  2019年   25篇
  2018年   26篇
  2017年   30篇
  2016年   47篇
  2015年   51篇
  2014年   49篇
  2013年   34篇
  2012年   50篇
  2011年   71篇
  2010年   49篇
  2009年   66篇
  2008年   43篇
  2007年   56篇
  2006年   43篇
  2005年   40篇
  2004年   53篇
  2003年   39篇
  2002年   20篇
  2001年   20篇
  2000年   22篇
  1999年   24篇
  1998年   24篇
  1997年   34篇
  1996年   33篇
  1995年   17篇
  1994年   22篇
  1993年   28篇
  1992年   16篇
  1991年   24篇
  1990年   19篇
  1989年   20篇
  1988年   26篇
  1987年   2篇
  1986年   1篇
排序方式: 共有1181条查询结果,搜索用时 31 毫秒
101.
不同轴向间距下涡轮级内非定常流场的数值研究   总被引:1,自引:3,他引:1  
针对不同轴向间距下涡轮级内非定常流动进行了数值研究.讨论了非定常条件下轴向间距变化对非定常性及流场分布的影响,探讨了转子和静子叶片之间的非定常相干的机理.结果表明,轴向间距L对转子内流动的非定常性有着强烈的影响.随着轴向间距的减小,静叶尾迹的强度及影响范围增加,静叶尾迹对动叶的周期性非定常影响还是主要出现在前缘附近.由于静叶尾迹的恢复效应与来流尾迹强度成正比,50%轴向间距下动叶出口流场的湍动能在动叶通道中央区域最小.   相似文献   
102.
湍流边界层厚度对三维空腔流动的影响   总被引:3,自引:0,他引:3  
采用脱体涡模拟(DES)方法开展了不同湍流边界层厚度(TTBL)下的三维空腔非定常流动数值计算。空腔长、宽、深比例为5:1:1,来流马赫数为0.85,雷诺数为13.47×106 m-1,各工况湍流边界层厚度比值为1:2:4:8。研究结果表明,湍流边界层厚度对自由剪切层的发展、空腔底部静态压力分布、脉动压力及空腔流动类型均有重要影响,且随着边界层厚度的增大,下游剪切层覆盖的范围会增大,但是剪切层增长率降低;空腔前后静态压力压差减小、压力梯度下降;腔内局部测点的脉动压力声压级下降,各阶声压峰值频率向低频方向偏移;空腔流动类型往开式流动方向转换。  相似文献   
103.
米百刚  詹浩  陈森林  饶丹 《航空动力学报》2016,31(10):2493-2499
基于阶跃响应方法,结合刚性动网格技术,对飞行器的单独静、动导数的精细化数值计算进行了研究.以纵向为例,通过给物面施加恒定附加攻角,求解得到阶跃响应运动过程的非定常气动力,求导得到静导数.同样给物面施加恒定的俯仰角速度,并同时强迫物面平动以抵消俯仰转动产生的附加攻角影响,可由非定常气动力求导得到动导数值.分别利用NACA0012翼型和三维SACCON飞翼无人机进行了计算验证,各攻角下的静、动导数值与文献、试验结果吻合得很好,最大误差不超过5%.结论表明:基于阶跃响应的单独静、动导数直接模拟方法计算耗时仅为传统强迫振动方法的21%,效率相对较高,且可推广到横航向的动导数计算,为飞行器的稳定性研究提供参考.   相似文献   
104.
微型扑翼体积小、重量轻,其柔性变形对气动特性有显著的影响。通过求解雷诺平均N-S方程(ReynoldsAveraged Navier-Stokes,RANS)和结构动力学方程,对微型柔性扑翼飞行器的气动结构耦合特性进行了数值模拟研究。针对微型扑翼的大幅运动,发展了适用于扑翼的气动结构耦合数值计算方法,研究了微型扑翼的气动结构耦合特性。通过求解雷诺平均Navier-Stokes(RANS)方程得到微型扑翼的非定常气动特性;利用哈密顿原理(Hamilton Principle)推导了扑翼的结构动力学方程,采用结构有限元方法对该动力学方程进行离散并求解,得到扑翼的动态结构特性;采用松耦合方法进行迭代。计算结果与风洞实验结果相比吻合良好,验证了所发展方法的有效性。在此基础上研究了惯性力和关键运动参数对柔性扑翼气动及结构特性的影响规律,有助于比较详细、全面地了解微型扑翼的气动机理,为柔性扑翼的设计提供了参考依据。  相似文献   
105.
旋翼非定常气动特性CFD模拟的通用运动嵌套网格方法   总被引:3,自引:4,他引:3  
针对直升机旋翼非定常气动特性CFD模拟中的网格生成难题,提出了一套高效、通用的运动嵌套网格生成方法.首先,基于Poisson方程求解和翻折法生成旋翼桨叶的正交贴体网格.其次,针对旋翼桨叶的扭转分布及变距、挥舞等复杂运动,建立了一套通用的洞单元识别的扰动衍射法;为保证洞包络面的封闭性,完善了挖洞过程中网格加密策略;在洞边界确立基础上,提出了一种高效、鲁棒的最小距离法贡献单元搜索的改进方法.在此基础上,建立了基于RANS(Reynolds-averaged Navier-Stokes)方程的旋翼非定常流场CFD模拟方法.最后,采用所建立的方法分别对悬停和前飞状态下的C-T(Caradonna-Tung)旋翼和7A(Helishape 7A)旋翼的气动特性、桨尖涡的位置进行了计算,计算结果与试验值误差小于5%,验证了该运动嵌套网格生成方法在旋翼非定常气动特性CFD模拟中的有效性.   相似文献   
106.
波浪形非均匀间隙封严结构影响涡轮性能的数值模拟   总被引:2,自引:0,他引:2  
利用数值模拟的方法研究了波浪形非均匀间隙封严结构和均匀轴向间隙封严结构下轮缘封严气流对涡轮性能的影响.研究表明:燃气入侵与出流结构受到静盘、动盘及主流切向速度的影响,以低于动盘转速同向旋转,并改变了转子的进气条件,增强了压力面马蹄涡强度,因此对转子出口流场造成很大影响.封严气流与上游导叶尾迹的相互作用引起转子通道内熵增,造成涡轮效率的下降.与均匀轴向间隙封严结构相比,波浪形非均匀间隙封严结构使大的入侵与出流结构破碎为小的结构,对涡轮性能的负面影响减小,涡轮效率提高了0.9%.结果证明了波浪形非均匀间隙封严结构在具有较好的封严效果的同时提高了涡轮性能.   相似文献   
107.
针对S型进气道弯度对其隐身气动特性影响程度的问题,利用CAD软件对进气道进行参数化建模,通过改变进、出口的中心偏移量实现对进气道弯度的改变。采用数值仿真方法分别研究了进气道前向电磁散射特性和进气道流场及气动特性。仿真结果表明,进气道弯度增加对隐身特性和气动特性的影响是完全相反的,并进一步分析出这一现象的产生机理,对进气道的隐身气动一体化设计具有指导性意义。  相似文献   
108.
以一定高度和速度飞行的母弹从其伞弹舱中抛撒伞弹系统群,各个伞弹系统的姿态摆动情况将影响其落点及落角,进而影响其作战效能。采用立式风洞试验和非定常数值仿真(CFD),分析平衡风速下十字形伞弹系统的姿态摆动情况。通过立式风洞试验,可确定柔性伞的外形、伞弹系统的阻力系数和摆动频率,并创新"拉拽式"试验模型的约束方法;采用基于三维N-S方程的CFX软件,进行伞弹系统非定常数值仿真,分析其摆动机理。结果表明:数值仿真得到的阻力系数、法向力系数、侧向力系数及其摆动频率,均与风洞试验结果相吻合,即数值仿真结果能够反映风洞试验中伞弹系统的摆动情况;伞弹系统的流场极不稳定,伞衣内部有一对方向相反、强度交替变化的旋涡,伞衣外部存在不稳定分离流动,二者相互关联,使得气动参数呈周期性波动,导致伞弹系统的姿态摆动。  相似文献   
109.
为了更好地对压气机流动进行模拟,在课题组自行开发的结构化有限体积解算器上实现了用于压气机流场计算的混合平面法、谐波平衡法及相滞后法.以NASA Stage 35为例,对3种方法的计算结果进行了比较分析.结果表明:相滞后法的计算精度最高,混合平面法的计算精度最低;相滞后法与半环的双时间推进法结果相近,计算速度提高了20倍;相比混合平面法,谐波平衡法能准确地模拟动静叶间的非定常干涉及进出口参数变化;在谐波阶数达到5阶后,谐波平衡法计算得到的结果不随阶数变化,且与相滞后法的结果基本吻合;混合平面法的计算效率远高于另外两种方法,相滞后法与谐波平衡法在谐波阶数为5阶时的计算效率相当.   相似文献   
110.
跨声压气机内确定应力耦合问题研究   总被引:1,自引:0,他引:1  
赵军  刘宝杰 《航空动力学报》2015,30(9):2234-2240
基于三维定常Denton程序发展了二维定常、二维非定常、三维非定常计算程序,以二维跨声压气机叶栅、三维跨声单级压气机近失速点为算例,进行确定应力耦合问题的研究.结果表明:在确定应力应用到时均方程的耦合处理中存在一些因素导致时均方程的解和非定常解的时均值有一定偏差,它们分别是空间差分离散引入的误差、黏性相关项引入的误差、掺混面处理引入的误差.在多排耦合问题中掺混面的处理方式至关重要,对耦合计算结果有较大的影响,简单的掺混面处理并不能获得理想的效果.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号