首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   82篇
  国内免费   117篇
航空   365篇
航天技术   158篇
综合类   51篇
航天   92篇
  2024年   1篇
  2023年   7篇
  2022年   14篇
  2021年   25篇
  2020年   25篇
  2019年   20篇
  2018年   25篇
  2017年   21篇
  2016年   29篇
  2015年   25篇
  2014年   26篇
  2013年   32篇
  2012年   38篇
  2011年   44篇
  2010年   40篇
  2009年   38篇
  2008年   45篇
  2007年   37篇
  2006年   42篇
  2005年   25篇
  2004年   18篇
  2003年   13篇
  2002年   10篇
  2001年   6篇
  2000年   4篇
  1999年   9篇
  1998年   9篇
  1997年   2篇
  1996年   5篇
  1995年   12篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1984年   2篇
排序方式: 共有666条查询结果,搜索用时 640 毫秒
381.
In Part I of this review, the concepts of solar vacuum-ultraviolet (VUV) observations were outlined together with a discussion of the space instrumentation used for the investigations. A section on spectroradiometry provided some quantitative results on the solar VUV radiation without considering any details of the solar phenomena leading to the radiation. Here, in Part II, we present solar VUV observations over the last decades and their interpretations in terms of the plasma processes and the parameters of the solar atmosphere, with emphasis on the spatial and thermal structures of the chromosphere, transition region and corona of the quiet Sun. In addition, observations of active regions, solar flares and prominences are included as well as of small-scale events. Special sections are devoted to the elemental composition of the solar atmosphere and theoretical considerations on the heating of the corona and the generation of the solar wind.  相似文献   
382.
Collisions among existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. Due to their greater number, small (1–10 cm) debris are the main threat, while large (>10 cm) objects are the main source of new debris. Flying up and interacting with each large object is inefficient due to the energy cost of orbit plane changes, and quite expensive per object removed. Strategically, it is imperative to remove both small and large debris. Laser-Orbital-Debris-Removal (LODR), is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LODR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. With 20% clear weather, a laser-optical system at either pole could lower the 8-ton ENVISAT by 40 km in about 8 weeks, reducing the hazard it represents by a factor of four. We also discuss the advantages and disadvantages of a space-based LODR system. We estimate cost per object removed for these systems. International cooperation is essential for designing, building and operating any such system.  相似文献   
383.
During conditions of northward interplanetary magnetic field (IMF), the near-tail plasma sheet is known to become denser and cooler, and is described as the cold-dense plasma sheet (CDPS). While its source is likely the solar wind, the prominent penetration mechanisms are less clear. The two main candidates are solar wind direct capture via double high-latitude reconnection on the dayside and Kelvin–Helmholtz/diffusive processes at the flank magnetopause. This paper presents a case study on the formation of the CDPS utilizing a wide variety of space- and ground-based observations, but primarily from the Double Star and Polar spacecraft on December 5th, 2004. The pertinent observations can be summarized as follows: TC-1 observes quasi-periodic (∼2 min period) cold-dense boundary layer (compared to a hot-tenuous plasma sheet) signatures interspersed with magnetosheath plasma at the dusk flank magnetopause near the dawn-dusk terminator. Analysis of this region suggests the boundary to be Kelvin–Helmholtz unstable and that plasma transport is ongoing across the boundary. At the same time, IMAGE spacecraft and ground based SuperDARN measurements provide evidence of high-latitude reconnection in both hemispheres. The Polar spacecraft, located in the southern hemisphere afternoon sector, sunward of TC-1, observes a persistent boundary layer with no obvious signature of boundary waves. The plasma is of a similar appearance to that observed by TC-1 inside the boundary layer further down the dusk flank, and by TC-2 in the near-Earth magnetotail. We present comparisons of electron phase space distributions between the spacecraft. Although the dayside boundary layer at Polar is most likely formed via double high-altitude reconnection, and is somewhat comparable to the flank boundary layer at Double Star, some differences argue in favour of additional transport that augment solar wind plasma entry into the tail regions.  相似文献   
384.
This chapter reviews the current understanding of ring current dynamics. The terrestrial ring current is an electric current flowing toroidally around the Earth, centered at the equatorial plane and at altitudes of ∼10,000 to 60,000 km. Enhancements in this current are responsible for global decreases in the Earth’s surface magnetic field, which have been used to define geomagnetic storms. Intense geospace magnetic storms have severe effects on technological systems, such as disturbances or even permanent damage of telecommunication and navigation satellites, telecommunication cables, and power grids. The main carriers of the ring current are positive ions, with energies from ∼1 keV to a few hundred keV, which are trapped by the geomagnetic field and undergo an azimuthal drift. The ring current is formed by the injection of ions originating in the solar wind and the terrestrial ionosphere into the inner magnetosphere. The injection process involves electric fields, associated with enhanced magnetospheric convection and/or magnetospheric substorms. The quiescent ring current is carried mainly by protons of predominantly solar wind origin, while active processes in geospace tend to increase the abundance (both absolute and relative) of O+ ions, which are of ionospheric origin. During intense geospace magnetic storms, the O+ abundance increases dramatically. This increase has been observed to occur concurrently with the rapid intensification of the ring current in the storm main phase and to result in O+ dominance around storm maximum. This compositional change can affect several dynamic processes, such as species-and energy-dependent charge-exchange and wave-particle scattering loss.  相似文献   
385.
Important observational manifestations of subvisible mesospheric dust are Polar Mesospheric Summer Echoes (PMSEs) which are produced by scattering from electron irregularities produced by dust charging. It has been observed that the PMSE strength can be artificially modified by using a ground-based ionospheric heating facility to perturb the electron irregularity source region that is believed to produce PMSE. Recently it has become evident that significant diagnostic information may be available about the dust layer from the temporal behavior of the electron irregularities during the heating process which modifies the background electron temperature. Particularly interesting and important periods of the temporal behavior are during the turn-on and turn-off of the radio wave heating. Most past theoretical models and experimental investigations have concentrated primarily on the later period. The objective here is to consider the temporal behavior and possibilities for diagnostic information available during the turn-on period of the radio wave. First, approximate analytical models are developed and compared to a more accurate full computational model as a reference. Then from the temporal behavior of the electron irregularities during the turn-on of the radio wave, the analytical models are used to obtain possible diagnostic information for various charged dust and background plasma quantities.  相似文献   
386.
Aurora is caused by the precipitation of energetic particles into a planetary atmosphere, the light intensity being roughly proportional to the precipitating particle energy flux. From auroral research in the terrestrial magnetosphere it is known that bright auroral displays, discrete aurora, result from an enhanced energy deposition caused by downward accelerated electrons. The process is commonly referred to as the auroral acceleration process. Discrete aurora is the visual manifestation of the structuring inherent in a highly magnetized plasma. A strong magnetic field limits the transverse (to the magnetic field) mobility of charged particles, effectively guiding the particle energy flux along magnetic field lines. The typical, slanted arc structure of the Earth’s discrete aurora not only visualizes the inclination of the Earth’s magnetic field, but also illustrates the confinement of the auroral acceleration process. The terrestrial magnetic field guides and confines the acceleration processes such that the preferred acceleration of particles is frequently along the magnetic field lines. Field-aligned plasma acceleration is therefore also the signature of strongly magnetized plasma. This paper discusses plasma acceleration characteristics in the night-side cavity of Mars. The acceleration is typical for strongly magnetized plasmas – field-aligned acceleration of ions and electrons. The observations map to regions at Mars of what appears to be sufficient magnetization to support magnetic field-aligned plasma acceleration – the localized crustal magnetizations at Mars (Acuña et al., 1999). Our findings are based on data from the ASPERA-3 experiment on ESA’s Mars Express, covering 57 orbits traversing the night-side/eclipse of Mars. There are indeed strong similarities between Mars and the Earth regarding the accelerated electron and ion distributions. Specifically acceleration above Mars near local midnight and acceleration above discrete aurora at the Earth – characterized by nearly monoenergetic downgoing electrons in conjunction with nearly monoenergetic upgoing ions. We describe a number of characteristic features in the accelerated plasma: The “inverted V” energy-time distribution, beam vs temperature distribution, altitude distribution, local time distribution and connection with magnetic anomalies. We also compute the electron energy flux and find that the energy flux is sufficient to cause weak to medium strong (up to several tens of kR 557.7 nm emissions) aurora at Mars. Monoenergetic counterstreaming accelerated ions and electrons is the signature of field-aligned electric currents and electric field acceleration. The topic is reasonably well understood in terrestrial magnetospheric physics, although some controversy still remains on details and the cause-effect relationships. We present a potential cause-effect relationship leading to auroral plasma acceleration in the nightside cavity of Mars – the downward acceleration of electrons supposedly manifesting itself as discrete aurora above Mars.  相似文献   
387.
Density of discontinuities in the heliosphere   总被引:1,自引:0,他引:1  
The spatial distribution of MHD discontinuities in the solar wind has been studied, based on the long time observations by the magnetometer onboard Ulysses. We emphasize the critical importance of the method whereby events are selected; some previous work is critically reviewed in this respect. Our analysis supports earlier observations that the density of discontinuities decreases with increasing distance from the Sun. It is suggested, however, that the distribution of the discontinuity normals should be revised, retaining only those discontinuities for further study that have reliable normals. This study shows that the vast majority of well defined discontinuities has a small magnetic field component parallel to the discontinuity normal. Given the large number of discontinuities in the Ulysses data set there is a statistically sufficient number for further study. It is also shown in this paper that for the subset of well defined discontinuities the determination of the normal vector using Minimum Variance Analysis and the cross-product technique are equally valid.  相似文献   
388.
Sekar  R. 《Space Science Reviews》2003,107(1-2):251-262
In this paper the developments made in the last five years on numerical simulation/modeling studies of a complex nighttime equatorial spread F phenomenon are reviewed. Emphasis is given to the Indian work and necessary comparisons are done with other international works on this field. Investigations involving the important aspects, namely the confinement of the plasma bubble in the bottomside of the ionosphere, linear and nonlinear effects of molecular ions in the development of plasma bubbles, interaction of two modes as a seed perturbation are discussed in detail. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
389.
彗星中尘埃的带电特性和平衡电势的研究   总被引:2,自引:1,他引:1  
分析了彗星中尘埃粒子的带电特性,以及计算了彗星尘埃等离子体的典型参数.对Halley彗星和G-Z彗星进行了讨论,得出了彗星中尘埃平衡电势的一些主要规律.一般来说,这些规律也可以适用于其他等离子体彗星.  相似文献   
390.
In the spherical accretion onto massive objects, the matter may be heated up to temperatures as high as 1012 °K. In such a hot plasma, the thermal bremsstrahlung (e-e and e-p) and π° decay from inelastic collisions of protons are the main γ-ray sources. We determined the γ -ray production spectra from the π° decay and from bremsstrahlung for different temperatures. The expected γ-ray spectra were evaluated too in order to fit experimental data. We have fitted COS B data from 3C 273 using a two temperatures plasma model. The best fit is for
(M8 is the black hole mass in 108 M) which gives . The hard X-ray measurements do not contradict the bremsstrahlung spectrum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号