首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   48篇
  国内免费   250篇
航空   695篇
航天技术   109篇
综合类   118篇
航天   74篇
  2024年   3篇
  2023年   5篇
  2022年   17篇
  2021年   37篇
  2020年   42篇
  2019年   28篇
  2018年   27篇
  2017年   38篇
  2016年   61篇
  2015年   77篇
  2014年   48篇
  2013年   43篇
  2012年   80篇
  2011年   56篇
  2010年   45篇
  2009年   62篇
  2008年   54篇
  2007年   36篇
  2006年   24篇
  2005年   24篇
  2004年   21篇
  2003年   8篇
  2002年   13篇
  2001年   16篇
  2000年   15篇
  1999年   8篇
  1998年   9篇
  1997年   17篇
  1996年   11篇
  1995年   10篇
  1994年   11篇
  1993年   11篇
  1992年   8篇
  1991年   13篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   1篇
排序方式: 共有996条查询结果,搜索用时 140 毫秒
441.
高超声速巡航飞行器在线自适应反馈控制设计   总被引:1,自引:1,他引:0  
由于飞行器模型的强非线性,各种建模不确定性以及飞行环境的复杂性,高超声速飞行器控制成为一个研究难点.针对某类具有参数不确定性的非线性系统,提出了一种反馈线性化与自适应估计相结合的方法,对非线性系统的输入输出动态应用反馈线性化处理以得到拟线性模型,并设计反馈控制律;对不确定参数采用自适应在线估计,利用Lyapunov方法分析稳定性;针对选择不同输出的情况,对如何消除内动态进行了讨论.为了验证该方法的可行性,将其应用于某高超声速飞行器巡航段纵向非线性模型,对速度和高度通道进行跟踪控制仿真,由于飞行器和大气环境存在建模不确定性,利用自适应控制对不确定参数进行在线估计.仿真结果显示该方法能够快速收敛,并且具有良好的在线自适应能力.  相似文献   
442.
飞机机翼表面霜冰的三维数值模拟   总被引:4,自引:3,他引:1  
张强  曹义华  钟国 《航空动力学报》2010,25(6):1303-1309
基于欧拉两相流理论对三维情况下飞机机翼表面的霜冰进行了数值模拟.根据水滴拟流体模型建立三维水滴控制方程;提出一套水滴控制方程的数值求解方法;由三维水滴流场的求解结果计算机翼表面的水滴收集特性,提出一种三维积冰外形的生成方法,完成了对飞机机翼表面霜冰的三维数值模拟.对ONERA M6机翼在不同迎角下霜冰的积冰情况进行了数值预测,并分析了结冰条件对积冰的影响.   相似文献   
443.
针对高超音速飞机纵向模型的高度非线性、强耦合、参数不确定等特点,提出了基于sim-link的建模方法。并基于所建模块用trim函数得到飞行状态的平衡点。所得结果可用于高超音速飞行器的控制器设计和仿真研究。  相似文献   
444.
基于动态逆的高超声速飞行器鲁棒自适应控制   总被引:3,自引:1,他引:2  
针对高超声速飞行器运动学模型具有高度非线性、多变量耦合及参数不确定等特点,提出了一种基于非线性动态逆的控制系统鲁棒自适应控制器设计方法.该方法将飞行器的运动方程分成速度子系统和高度子系统,利用控制输入的功能分配,并结合虚拟控制指令设计与非线性动态逆技术,实现速度和高度的稳定跟踪.为消除系统中模型不确定性和外界干扰的影响,采用鲁棒自适应滑模控制策略进行补偿.仿真结果表明:所提出的控制器设计方法不仅满足飞行器速度与高度跟踪性能的要求,且对模型不确定性和外干扰具有一定的鲁棒性.   相似文献   
445.
邵艳  周进  赖林  汪洪波  雷静 《航空动力学报》2011,26(7):1599-1607
基于混合RANS/LES (Reynolds averaged Navier-Stokes/large eddy simulation)方法模拟了高超声速低温(HYLTE)喷管倾斜入射横向射流的非定常混合反应过程,研究了不同副喷管喷射角和副喷管间距对射流穿透、混合以及总压损失的影响.计算表明,射流穿透深度和混合程度随着副喷管喷射角的增大而增大,但是总压损失也随之增大;副喷管间距增大,燃料射流的穿透深度增大而且总压损失略有减小,但反转旋涡对(CVP)的集中会造成射流与来流的接触面积减小,侧面混合变差.因此优化副喷管喷射角和间距对于提高HYLTE喷管混合性能乃至激光器光学性能都十分重要.通过模拟HYLTE喷管和光腔耦合区域的12组分23方程的反应流场发现,在中心线附近有较强的小信号增益系数,混合RANS/LES相比RANS方法更能反映流场变量的细节变化.   相似文献   
446.
靳旭红  黄飞  程晓丽  苏鹏辉 《航空学报》2021,42(3):124118-124118
针对高空航天飞机等再入飞行器表面缺陷或防热瓦缝隙导致的局部压力过高和气动加热问题,采用直接模拟Monte Carlo (DSMC)方法研究了飞行高度为80 km的稀薄流区高超声速凹腔绕流问题,考虑气固相互作用(GSI)模型对凹腔流场特征和表面压力、热流的影响。结果表明:稀薄流条件(80 km)下,GSI为完全漫反射时,在凹腔前缘分离的剪切层再次附着在后缘,在凹腔内部形成一个充满腔体的单涡结构;随着GSI从完全漫反射向镜面反射变化,气体与凹腔表面之间的切向动量交换减弱,即黏性剪切作用减弱,外部气流被卷入凹腔的程度减弱,导致涡结构不断减小直至消失,凹腔底部逐渐出现所谓的"死水区"。与完全漫反射相比,镜面反射或近镜面反射会导致凹腔上游侧面的峰值压力和峰值热流以及下游侧面的峰值压力剧烈增大,在飞行器设计中,应特别留意上述表面的压力载荷和热载荷。  相似文献   
447.
一种前体加宽型高超声速进气道试验方案研究   总被引:2,自引:0,他引:2  
袁化成  郭荣伟 《航空学报》2012,33(4):617-624
 根据矩形截面高超声速进气道前体的流动特征,对一种前体加宽型高超声速进气道试验方案开展了数值仿真及高焓风洞试验研究。首先,对不同前体宽度的高超声速进气道开展了三维数值仿真研究,结果显示:随着前体宽度的增加,进气道的流量系数和静压比逐渐增加,而总压恢复系数和隔离段出口马赫数逐渐减小,表现为先急后缓,且当来流马赫数和来流攻角变化时依旧保持上述变化规律。其次,对前体加宽型高超声速进气道试验方案开展了高焓风洞试验研究,结果表明:加宽前体可有效地提高进气道的流量系数,较为真实地反映此类进气道的流动特征,试验结果与数值仿真结果吻合较好。考虑到进气道性能参数随前体宽度变化规律表现为先急后缓,建议在试验条件下前体宽度比取0.5~0.8之间较为适宜。  相似文献   
448.
超声速/高超声速双拐点喷管设计   总被引:1,自引:0,他引:1  
为实现直连式试验台、高温风洞等试验设备的多马赫数运行,提出了双拐点喷管设计方法.喷管分2段设计,第1段共用,采用3次B-Spline函数描述喷管轴线马赫数分布.首先采用特征线方法求解Euler方程,得到无黏的理想喷管型面.其次采用参考温度方法求解边界层位移厚度,对无黏壁面进行修正得到实际壁面.共用段喷管出口的平行均匀流作为第2段喷管设计的初值.为验证设计方法的可行性,设计了中间马赫数为3.0,出口马赫数分别为4.0,4.5和5.0的双拐点喷管,并采用雷诺平均的Navier-Stokes方程对设计的喷管流场进行数值模拟.计算结果表明:喷管出口流场均匀,试验菱形区的马赫数误差小于1.2%.该方法提高了喷管设计精度,保证消波干净,为直连式试验台、高温风洞等设备的多个喷管共用一套动力系统提供了基础.   相似文献   
449.
大内收缩比二元高超声速进气道波系配置特性   总被引:3,自引:3,他引:0  
为了发展适应宽飞行范围的高超声速二元进气道设计技术,考察了内收缩比对进气道特性的影响规律,并提出了结合附面层抽吸辅助自起动的大内收缩比进气道波系设计方法,改善了二元进气道低马赫条件下流量捕获低的弱点。研究发现,存在着设计点推力最优进气道内收缩比,而进气道非设计点流量系数随内收缩比而增大。基于最优内收缩比进气道构型,取消外压激波封口约束,通过局部等熵压缩波分散打进内收缩段内部,大幅提高了进气道低马赫流量捕获。并进一步通过合理配置内收缩段抽吸槽,以设计点(马赫6)1%,非设计点(马赫4)3%的流量损失使进气道自起动马赫数降到3.35,改善了内收缩比过大导致的自起动问题。  相似文献   
450.
沈作军  柳青  肖佳平 《航空学报》2016,37(1):317-323
针对高超声速飞行器研制工程的高风险特点,对工程决策方和研制方面临的不同类型风险进行了建模分析。基于系统方案或关键技术的固有风险概率和抽象化的研发与验证过程,分别计算分析了工程决策方误判验收通过不合格产品和研制方过度研发或重复验证较低失败概率产品的风险概率,进而提出了高风险研发项目中研制方过度研发风险的概念,明确了工程决策误判风险与研制方过度研发风险的相互影响规律,并基于概率方法建立了一种可以综合权衡决策方风险和研制方风险、合理确定研制周期的系统工程优化方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号