首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1107篇
  免费   150篇
  国内免费   381篇
航空   948篇
航天技术   313篇
综合类   171篇
航天   206篇
  2024年   7篇
  2023年   23篇
  2022年   46篇
  2021年   68篇
  2020年   58篇
  2019年   50篇
  2018年   60篇
  2017年   82篇
  2016年   81篇
  2015年   66篇
  2014年   92篇
  2013年   75篇
  2012年   72篇
  2011年   98篇
  2010年   64篇
  2009年   85篇
  2008年   73篇
  2007年   58篇
  2006年   53篇
  2005年   54篇
  2004年   45篇
  2003年   39篇
  2002年   28篇
  2001年   27篇
  2000年   33篇
  1999年   20篇
  1998年   27篇
  1997年   28篇
  1996年   24篇
  1995年   19篇
  1994年   16篇
  1993年   19篇
  1992年   15篇
  1991年   8篇
  1990年   9篇
  1989年   9篇
  1988年   5篇
  1984年   2篇
排序方式: 共有1638条查询结果,搜索用时 15 毫秒
951.
转子支承动刚度对转子动力特性的影响分析   总被引:8,自引:0,他引:8  
针对转子支承动刚度对转子动力特性的影响,分别运用静刚度、动刚度和整机有限元模型对某型发动机进行了转子动力特性计算,并对各种计算结果进行了比较和分析;分析了转子支承动刚度剧烈变化的原因,同时,指出运用整机模型能够分析支承动刚度和各种机匣的局部振动对整机振动的影响。  相似文献   
952.
一种新的动网格方法及其应用   总被引:1,自引:0,他引:1  
刘学强  李青  柴建忠  N. Qin 《航空学报》2008,29(4):817-822
 介绍了一种新型的动网格方法。该方法以Delauney图为基础进行整个网格的移动变形:首先是生成满足Delauney特性的Delauney图;然后把对网格移动的特性映射到Delauney图的移动上;最后把网格点在Delauney图以映射的方式进行重新定位而得到新的网格点坐标,从而得到移动后的网格。该方法不需要迭代,因而效率高,并且能适用于任意拓扑结构的网格。以翼身组合体的机翼颤振、翼身融合体的变体过程的非定常流动等为例来说明该方法的高效性及适用面广等特点。  相似文献   
953.
郭涵涛 《飞机设计》2022,42(6):27-33
直升机在飞行过程中,由于旋翼空气动力学环境及结构的特殊性,旋翼桨叶受到周期性的气动载荷使桨叶产生弹性振动,在桨叶内部引起结构振动载荷,其振动载荷沿桨毂传到机体上,引起机体的振动响应,从而形成直升机严重的振动问题。为了解决直升机机体的振动问题,基于 Patran/Nastran 有限元软件,对型号直升机机身进行动力学特性分析,研究旋翼载荷和机体结构等方面对机体振动的影响,并集成 Isight 优化软件对其进行结构优化分析,从而达到机体减振的效果。  相似文献   
954.
利用雷诺平均可压缩N-S方程以及可实现k-ε模型,对边条翼下进气的飞机进行了内外流场的气动耦合计算,研究分析了边条翼下进气道进口处的局部流场特性,说明了局部流场特性随攻角变化的关系,数值模拟与实验结果吻合较好.通过改变进气道的流量系数,分析飞机流场的变化,重点阐明了进气道流量系数对边条涡破碎位置的影响以及机理,即:进气道流量系数越低,涡的破碎位置就越提前,会影响飞机的气动性能.这为今后进一步研究奠定了坚实的基础.  相似文献   
955.
A way to improve the accuracy of the three-body problem model is taking into account the eccentricity of primary attractors. Elliptic Restricted Three-Body Problem (ER3BP) is a model for studying spacecraft trajectory within the three-body problem such that the orbital eccentricity of primaries is reflected in it. As the principal cause of perturbation in the employed dynamical model, the primaries eccentricity changes the structure of orbits compared to the ideal Circular Restricted Three-Body Problem (CR3BP). It also changes the attitude behavior of a spacecraft revolving along periodic orbits in this regime. In this paper, the coupled orbit-attitude dynamics of a spacecraft in the ER3BP are exploited to find precise periodic solutions as the spacecraft is considered to be in planar orbits around Lagrangian points and Distant Retrograde Orbits (DRO). Periodic solutions are repetitious behaviors in which spacecraft whole dynamics are repeated periodically, these periodic behaviors are the main interest of this study because they are beneficial for future mission designs and allow delineation of the system’s governing dynamics. Previous studies laid the foundation for spacecraft stability analysis or studying pitch motion of spacecraft in the ER3BP regime. While in this paper, at first, initial guesses for correction algorithms were derived through verified search methods, then correction algorithms were used to refine calculated orbit-attitude periodic behaviors. Periodic orbits and full periodic solutions are portrayed and compared to previous studies and simpler models. Natural periodic solutions are valuable information eventuate in the longer functional lifetime of spacecraft. Since the problem assumption considered in this paper is much closer to real mission conditions, these results may be the means to use natural bounded motions in the actual operational environment.  相似文献   
956.
《中国航空学报》2020,33(8):2133-2145
The spaceplane is perspective vehicle due to wide maneuverability in comparison with a space capsule. Its maneuverability is expressed by the larger flight range and also by a possibility to rotate orbital inclination in the atmosphere by the aerodynamic and thrust forces. Orbital plane atmospheric rotation maneuvers can significantly reduce fuel costs compared to rocket-dynamic non-coplanar maneuver. However, this maneuver occurs at Mach numbers about 25, and such velocities lead to non-equilibrium chemical reactions in the shock wave. Such reactions change a physicochemical air property, and it affects aerodynamic coefficients. This paper investigates the influence of non-equilibrium reactions on the aerothrust aeroassisted maneuver with orbital change. The approach is to solve an optimization problem using the differential evolution algorithm with a temperature limitation. The spaceplane aerodynamic coefficients are determined by the numerical solution of the Reynolds-averaged Navier-Stokes equations. The aerodynamic calculations are conducted for the cases of perfect and non-equilibrium gases. A comparison of optimal trajectories, control laws, and fuel costs is made between models of perfect and non-equilibrium gases. The effect of a chemically reacting gas on the finite parameters is also evaluated using control laws obtained for a perfect gas.  相似文献   
957.
《中国航空学报》2020,33(9):2342-2356
Uncertainty is extensively involved in the rotor systems of rotating machinery, which may cause an unstable vibrational response. To take the uncertainty into consideration for the uncertain rotor-bearing system, an improved unified interval analysis method based on the Chebyshev expansion is established in this paper. Firstly, the Chebyshev Interval Method (CIM) to calculate not only the critical speeds but also the dynamic response of rotor with uncertain parameters is introduced. Then, the numerical investigation is carried out based on the developed double disk rotor model and computation procedure, and the results demonstrate the validity. But when the uncertainty is sufficiently large to influence critical speeds, the upper and lower bounds are far from the actual bounds. In order to overcome the defects, a Bound Correction Interval analysis Method (BCIM) is proposed based on the Chebyshev expansion and the modal superposition. In use of the improved method, the bounds of the interval responses, especially the upper bound, are corrected, and the comparison with other methods demonstrates that the higher accuracy and a wider application range.  相似文献   
958.
Stops along taxi trajectories, such as picking up and dropping off passengers, are spatially clustered and related to certain attributes of places where stops are made. To detect the hidden knowledge regarding these places, this article examines the semantics of massive taxi stops in a large city. Each taxi trajectory is modeled as a series of sequential semantic stops labeled by street names. All the trajectories can be examined as a document corpus, from which the hidden themes of the stops are identified through Latent Dirichlet Allocation model. Conventional GIS tools are coupled with topic modeling toolkit to visualize and analyze potential information of stop topics for understanding intra-city dynamics. The effectiveness of this approach is illustrated by a case study using a large dataset of taxi trajectories including approximately 4,000 taxis in Wuhan, China.  相似文献   
959.
The aerodynamic layout of the Canard Rotor/Wing(CRW) aircraft in helicopter flight mode differs significantly from that of conventional helicopters. In order to study the flight dynamics characteristics of CRW aircraft in helicopter mode, first, the aerodynamic model of the main rotor system is established based on the blade element theory and wind tunnel test results. The aerodynamic forces and moments of the canard wing, horizontal tail, vertical tail and fuselage are obtained via theoretical analysis and empirical formula. The flight dynamics model of the CRW aircraft in helicopter mode is developed and validated by flight test data. Next, a method of model trimming using an optimization algorithm is proposed. The flight dynamics characteristics of the CRW are investigated by the method of linearized small perturbations via Simulink. The trim results are consistent with the conventional helicopter characteristics, and the results show that with increasing forward flight speed, the canard wing and horizontal tail can provide considerable lift,which reflects the unique characteristics of the CRW aircraft. Finally, mode analysis is implemented for the linearized CRW in helicopter mode. The results demonstrate that the stability of majority modes increases with increasing flight speed. However, one mode that diverges monotonously,and the reason is that the CRW helicopter mode has a large vertical tail compared to the conventional helicopter. The results of the dynamic analysis provide optimization guidance and reference for the overall design of the CRW aircraft in helicopter mode, and the model developed can be used for control system design.  相似文献   
960.
High-fidelity cargo airdrop simulation requires the contact dynamics between an aircraft and a cargo to be modeled accurately. This paper presents a general and efficient contact-friction model for simulation of aircraft-cargo coupling dynamics during airdrops. The proposed approach has the same essence as that of the finite element node-to-segment contact formulation, which leads to a flexible, straight forward, and efficient code implementation. The formulation is developed under an arbitrary moving frame with both the aircraft and the cargo being treated as general six-degree-of-freedom rigid bodies, and thus it eliminates the restrictions of lateral symmetric assumptions in most existing methods. Moreover, the aircraft-cargo coupling algorithm is discussed in detail, and some practical implementation details are presented. The accuracy and capability of the present method are demonstrated through three numerical examples with increasing complexity and fidelity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号