首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   49篇
  国内免费   48篇
航空   192篇
航天技术   39篇
综合类   43篇
航天   45篇
  2024年   1篇
  2023年   5篇
  2022年   6篇
  2021年   10篇
  2020年   11篇
  2019年   11篇
  2018年   13篇
  2017年   18篇
  2016年   18篇
  2015年   15篇
  2014年   16篇
  2013年   8篇
  2012年   18篇
  2011年   16篇
  2010年   11篇
  2009年   11篇
  2008年   12篇
  2007年   14篇
  2006年   12篇
  2005年   12篇
  2004年   6篇
  2003年   4篇
  2002年   5篇
  2001年   11篇
  2000年   8篇
  1999年   9篇
  1998年   8篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
排序方式: 共有319条查询结果,搜索用时 265 毫秒
271.
互击式喷嘴燃烧室燃烧效率实验   总被引:3,自引:4,他引:3  
为了获得凝胶推进剂火箭发动机高效燃烧室的设计参数,依据推进剂特性,设计了7种不同结构的燃烧室,通过实验手段,研究了燃烧室特征长度、喷嘴孔径和推进剂物性等参数对燃烧效率的影响。结果表明:增大燃烧室的特征长度,增加了推进剂的停留时间,有利于推进剂充分雾化和燃烧。减小撞击孔径,提高了射流的剪切速率,降低了推进剂的粘性,可以改善雾化和燃烧效率。为了提高含碳凝胶推进剂的燃烧效率,需减小碳粒粒度或者增加燃烧室特征长度。  相似文献   
272.
徐飞  潘蕾  白云瑞  曹佳梦  陶杰  陶海军  蔡雷 《航空学报》2014,35(6):1724-1732
为了改善TA2/Cf/PEEK纤维金属混杂层板中TA2/PEEK的界面粘结性能,利用NaTESi恒压阳极氧化法对TA2板进行表面改性。首先通过正交试验对阳极氧化工艺进行优化,对不同处理工艺的TA2板表面进行了XRD、SEM分析以及粗糙度的表征;其次,研究了钛板表面改性对TA2/PEEK界面结合强度及断裂韧性的影响。结合扫描电镜图进行表面粗糙度及剪切强度的极差分析,发现随着阳极氧化时间的增长,表面粗糙度减小,TA2/PEEK接头的单搭剪切强度下降。对不同工艺下单搭接头的拉伸剪切强度进行比较后,确定了利于提高TA2/PEEK界面结合强度的最优工艺为恒压10 V、在35℃下阳极氧化10 min;该种工艺处理后的钛板表面粗糙度为1.34 μm,其表面形貌为纳米颗粒,粒径尺寸为100~200 nm,在阳极氧化时间为10 min、电压为10 V时,其表面纳米颗粒分布最为均匀,该种形貌下制备的TA2/PEEK界面剪切强度达到19 MPa,失效模式为混合破坏;通过载荷-位移曲线、R曲线,对此工艺下TA2/PEEK界面I型层间断裂韧性进行了表征,发现其平均能量释放率为188.1 J/m2,相比于未经表面处理的试样增加了103.1%,阳极氧化工艺处理后的TA2/PEEK界面抗分层能力更好。  相似文献   
273.
高超声速钝双楔绕流流动转捩与分离流动的壁温影响   总被引:2,自引:0,他引:2  
尚庆  陈林  李雪  袁湘江 《航空学报》2014,35(11):2958-2969
为研究壁温对吸气式高超声速飞行器进气道转捩流动的影响,选取钝双楔这一典型外形,基于德国Aachen工业大学Thomas与Herbert所开展的双楔高超声速风洞试验,分析了一些已有的计算流体力学(CFD)研究内容,并结合本文不同方法的CFD数值模拟结果,讨论了不同壁面温度对该双楔模型高超声速绕流流动转捩与流动分离的影响。对于双楔模型,流动分离一般发生在拐角附近,由于流动分离旋涡的剪切作用会诱发流动转捩,转捩又会改变流动分离强度、分离涡尺寸,若分离流动存在非定常特征则将导致非定常旋涡运动与流动转捩的复杂相互作用。通过比较已有文献的CFD数值模拟结果与本文计算结果,表明只有按照转捩思路开展的数值模拟才能够反映该风洞试验情况。计算结果与试验数据的比较显示,文献中按照第一压缩面层流与第二压缩面湍流状态计算得到的结果能够在一定程度上与风洞试验数据相符,本文使用MUSCL格式、剪切应力输运(SST)湍流模型与γ-Reθ关联转捩模型这种计算方法,得到的结果与试验数据符合较好,正确地反映了风洞试验情况。分析还表明,在分离流动之前的区域,随着壁面温度的升高,壁面热流会下降,近壁区域黏性系数变大,边界层内速度剖面不饱满,速度边界层较厚,厚的速度边界层容易发生流动分离现象。  相似文献   
274.
建立高速人字齿轮副外部空气的流体动力学模型,基于RNG (re-normalization grop)k-ε湍流模型及动网格技术,仿真分析了齿轮周围气流瞬态特性,阐明了齿轮风阻损失机理,研究了齿轮副转速、转向和螺旋角变化对风阻功率的影响规律。结果表明:齿轮副风阻损失主要来源于齿面压差力矩,风阻功率近似与转速的3次方成正比;齿轮副正反转将改变轮齿周围气流方向及齿面最大压差位置,但对风阻功率无影响;螺旋角增大有利于降低风阻功率,螺旋角越大,齿轮副风阻功率降低越显著。单齿风阻力矩曲线呈周期变化,通过啮合区时出现增大-减小至负值-再增大-减小至平稳的波动特性,在非啮合区时趋于平稳;单齿风阻力矩波动值随转速增大而增大,随螺旋角增大而减小。  相似文献   
275.
针对星形人字齿轮系统,采用热弹流润滑理论和粗糙峰接触计算方法获得不同表面粗糙度下齿面各啮合位置的油膜承载比例及摩擦因数,结合齿面接触载荷和滑移速度计算,分析齿面热流密度分布状态;借助齿轮系统喷油润滑流场仿真得出系统油液分布及齿轮表面传热系数;基于流体动力学仿真和混合弹流润滑分析结果,建立齿轮系统稳态温度场有限元模型,仿真研究各齿轮表面的温度分布规律。结果表明:啮合区中心油膜越厚油膜承载比例越高;综合摩擦因数受几何参数和载荷影响,内、外啮合齿轮副从节点处向齿顶齿根位置摩擦因数呈先增大后减小趋势;太阳轮啮合频次高且散热较慢,温升高于其他齿轮,高温区位于齿顶和齿根,随粗糙度增大太阳轮温度明显升高。  相似文献   
276.
在动态目标的CCD探测中,一个非常关键的技术就是对CCD输出信号噪声的抑制或削弱,以提高输出信号的信噪比。首先,对CCD输出信号的特性及常用处理方法进行了简要描述,并结合CCD输出噪声的特点,对相关双采样(Correlated Double Sampling)法进行了细致地分析。最后在建立CDS传输函数及噪声分析模型的基础上,利用最适合的相关双采样技术对CCD信号存在的复位噪声及其它低频噪声的抑制进行了相关测试。结果表明:对2δ法CDS电路,只要选择合适的采样时间,不仅能有效地消除KTC噪声,而且对低频噪声及其它白噪声也有不同程度的抑制。  相似文献   
277.
由于双体小行星独特的运动形式可为行星的演化提供重要线索,因而成为小行星探测中的热点目标。基于双椭球体模型研究了双小行星系统的相对运动、平衡态及稳定性。首先基于双椭球的全二体模型建立了双星系统相对运动的动力学方程;其次利用拉格朗日方程,通过求解系统角动量和能量,建立了双星系统平衡态对应的状态约束;最后给出了通过零速度状态曲面判断双星系统平衡态稳定性的一般性方法,在此基础上分析了小行星物理参数变化对系统平衡态稳定性的影响。研究可为未来双体小行星系统探测任务中的轨道设计与控制提供重要的理论参考。  相似文献   
278.
针对高支撑刚度、大推力输出的需求,提出了一种双音圈差动结构、轴向支撑的新型音圈作动方法,实现了在紧凑结构空间内磁能的最大化利用,提高了音圈电机的效能。首先进行了结构设计,利用两块环状永磁建立了内外圈两个工作磁隙,每个工作磁隙采用一组差动音圈。然后进行了磁场设计,进行了有限元模型分析,以磁场均匀性和磁场强度为目标进行了结构参数的优化。最后,加工制造出样机,进行了实际的输出力特性测试、频率特性测试,测试结果表明:该差动音圈电机具有较高的推力,在运动范围内,推力平稳,效能满足设计预期  相似文献   
279.
提出了双耦合Duffing振子仿真系统检测小通道气液两相流型信号的方法。搭建了双耦合Duffing振子仿真系统,针对流型信号的特征确定了3个关键参数:阻尼比、耦合系数和频率,并应用典型混沌信号Lorenz和R9ssler对该仿真系统进行了性能检测。在两相流型信号检测时,提取了振子振动的瞬时速度和位移2个特征值,并基于特征值对流型动力学特性及流型辨识进行了深入研究。结果表明:通过对典型混沌系统的检测验证,发现本文检测方法具有较好的抗噪能力,能够较好地表征典型信号的混沌特性。提取的2个特征值能够揭示出小通道气液两相流型转变过程中气液两相间的作用机理。系统的振子振动瞬时速度结合位移实现了小通道气液两相流典型流型的准确识别,有助于其他不同介质的多相流动特性分析与流型辨识。  相似文献   
280.
本文介绍了对激波管流动采用两次曝光全息干涉、M-Z 干涉和差分干涉三种技术所获得的双马赫反射二维密度场的定量测量结果,并与数值计算结果作了比较,两者十分吻合。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号