首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   117篇
  国内免费   84篇
航空   309篇
航天技术   59篇
综合类   44篇
航天   146篇
  2024年   2篇
  2023年   14篇
  2022年   14篇
  2021年   14篇
  2020年   20篇
  2019年   17篇
  2018年   15篇
  2017年   28篇
  2016年   18篇
  2015年   14篇
  2014年   29篇
  2013年   17篇
  2012年   24篇
  2011年   32篇
  2010年   21篇
  2009年   28篇
  2008年   24篇
  2007年   38篇
  2006年   30篇
  2005年   20篇
  2004年   23篇
  2003年   20篇
  2002年   10篇
  2001年   15篇
  2000年   16篇
  1999年   8篇
  1998年   9篇
  1997年   5篇
  1996年   10篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
排序方式: 共有558条查询结果,搜索用时 31 毫秒
231.
碳纤维复合材料湿热老化加速关系   总被引:1,自引:0,他引:1  
受环境因素作用,碳纤维增强聚合物基复合材料(Carbon fiber reinforced polymer composities,CFRP)湿热环境下发生性能退化是一个重要的工程问题,而如何通过实验室加速试验再现自然环境对复合材料的老化作用成为解决此问题的关键。基于时间-温度-湿度等效原理,将湿热环境下CFRP粘弹性能的改变作为材料的老化损伤度量,建立不同湿热环境之间当量折算关系,提出加速老化当量折算系数的确定方法。以典型军机结构用CFRP为例,实例计算了材料不同温度、湿度环境下的当量折算系数,根据地面停放环境谱当量折算得到加速试验谱,加速效果令人满意。最后,对比分析了温度与湿度对当量折算系数的影响,结果表明,温度变化对当量折算系数的影响要比湿度变化的影响显著。  相似文献   
232.
石友安  贺立新  邱波  曾磊  耿湘人  魏东 《航空学报》2016,37(4):1207-1217
为了深入认识复合材料的多尺度传热特性,预测复合材料宏观热物性参数,基于通用单胞思想和多尺度传热特性分析,建立了一种有效预测碳布叠层穿刺复合材料等效热物性参数的方法。基于电镜扫描分析了纤维束和编织结构的特征,采用通用单胞思想,建立了介/细观传热分析模型,通过数值仿真进行了一系列的多尺度传热特性分析,譬如:纤维体积分数对纤维束结构传热特性的影响、穿刺纤维束大小对编织结构传热特性的影响分析,在此基础上,建立了胞体模板扩展,初步将介/细观结构研究规律应用到宏观结构热物性预测,并进行多层胞体传热特性分析。验证实验表明:等效热物性预测值与实验值吻合较好,方法有效,为深入理解认识碳布叠层穿刺复合材料的介/细观传热特性提供了有效的分析手段。  相似文献   
233.
为实现碳卫星载荷在轨温度的准确预测,对其试验状态瞬态热分析模型的修正进行研究。先比较热分析计算结果与热平衡试验结果,求出两者对应温度监控点的温差;再利用蒙特卡洛法对二氧化碳探测仪热分析模型参数进行灵敏性分类,将模型参数分为整体灵敏、局部灵敏与不灵敏参数。然后根据热平衡试验数据,用拉丁超立方和单纯形法的混合法对模型各个参数进行分层修正,得到满足目标函数各个灵敏性参数的最优值。最后将参数最优值代入热分析模型计算验证该修正方法正确性,并进行残差分析。结果显示修正后各温度监控点热分析计算与热试验温差δa小于±0.5℃,残差修正率θ高于80%,修正后多数温差比修正前减少了一个数量级。结果表明修正取得的效果明显,修正方法合理可行。  相似文献   
234.
以某小流量超临界二氧化碳(SCO_2)离心压缩机为例,开展了近临界点SCO_2压缩机多工况数值模拟。研究发现:物性表格的分辨率对流场的计算结果影响较大,尤其是在冷凝区域,同时,物性的剧烈变化导致流场高梯度、强非线性使得近临界点SCO_2压缩机数值模拟存在极易发散的问题。通过精细调节物性表格分辨率以及库朗数等数值参数获得了多工况范围内的收敛解,与实验数据对比的结果表明:5×10~4 r/min转速下设计点进口工况最大相对误差为9.1%。设计了某5MW级热功率SCO_2布雷顿循环主压缩机并完成三维数值模拟。在保证效率基本不变的前提下,通过调整后弯角并与其他几何参数匹配,实现了压缩机压比及喘振裕度增加,并抑制了吸力面冷凝区域的发展。  相似文献   
235.
碳纤维织物/聚苯硫醚复合材料工艺研究   总被引:2,自引:0,他引:2  
王玉琦 《航空学报》1993,14(4):214-218
研究了碳纤维织物增强交联型聚苯硫醚复合材料的粉末成型工艺。以不同工艺条件成型复合材料层板,测试弯曲及动态力学性能,并对纤维-树脂渗透及纤维-基体界面粘结情况进行显微观察。确定了获得高性能复合材料较理想的工艺参数。  相似文献   
236.
孔隙的存在是炭纤维复合材料层压板加工过程中不可避免的缺陷,并且会对炭纤维复合材料结构的性能产生很大的损害.针对[(±45°)/(0,90°)_2/ (±45°)]_S炭纤维复合材料层压板,详细分析了层压板内孔隙的尺寸、形状及分布特征.通过施加不同的固化压力制备了不同孔隙率含量的试件.采用显微图像分析技术和性能测试对炭纤维复合材料层压板内孔隙的形态及其对炭纤维复合材料层压板力学性能的影响进行了研究,采用图像分析软件对孔隙的形状和尺寸进行了定量的表征.结果表明,对于铺层为[(±45°)/(0,90°)_2/ (±45°)]_S层压板,孔隙主要分布于层间,且都沿着平行于铺层的方向发展.随着固化压力的减小,孔隙率增大、层间剪切强度和压缩强度下降.  相似文献   
237.
利用等离子体浸没离子注入与沉积(PIIID)复合强化技术,在AISI440C航空轴承钢表面合成了类金刚石碳(DLC)薄膜。Raman光谱分析揭示出所制备的DLC膜层主要是由金刚石键(sp3)和石墨键(sp2)组成的混合无定形碳膜,且sp3键含量大于10%。原子力显微镜(AFM)形貌表明,DLC膜层表面光滑,结构致密均匀,与基体结合良好。被处理薄膜试样在90%置信区间下的疲劳寿命L10,L50,特征疲劳寿命La和平均寿命较基体分别延长了10.1,4.2,3.5和3.6倍。ANSYS模拟结果显示,最大剪切应力出现在膜基结合处并且靠近膜层内部,最大值达到2 150 MPa。结合ANSYS模拟结果和扫描电镜(SEM)观察形貌分析发现,膜层内部存在的微观缺陷是滚动接触疲劳裂纹产生的诱因,循环载荷所形成的最大剪切应力和润滑油中污染颗粒的共同作用是疲劳磨坑最终形成的外在动力。建立了循环载荷条件下PIIID DLC/AISI440C轴承接触疲劳破坏的5阶段物理模型。  相似文献   
238.
采用粒子图像测速仪(PIV)试验研究了喷嘴套吹积炭孔面积对双级旋流器出口流场的影响.试验结果表明:随着吹积炭孔面积与双级旋流器开孔面积之比由0增大到0.24,回流速度下降,进入双级旋流器内部的回流气量减小.当吹积炭孔面积与双级旋流器开孔面积之比大于等于0.18,吹积炭气流会扰乱双级旋流器出口附近流场,破坏双级旋流器出口对称的双涡结构,吹积炭气流对双级旋流器出口流场的影响范围为X/D=0~0.8.   相似文献   
239.
对碳纤维-玄武岩纤维混杂增强树脂基复合材料最优混杂比范围进行研究。以碳纤维与玄武岩纤维平纹织物为增强体,制备9种具有不同混杂比的混杂纤维复合材料(Hybrid Fiber Reinforced Polymer,HFRP)试样,并进行拉伸实验。依据平纹织物结构特点,计算得出平纹织物单胞性能参数,在ANSYS中,以SHELL181壳单元体建立HFRP有限元模型。该模型对试样刚度的模拟值与实验值近似。分析模型受力时的应力云图发现,存在将HFRP破坏形式分为一次破坏与二次破坏的临界混杂比。有限元模拟研究树脂含量为45%时,不同混杂比的HFRP刚度、强度和拉伸极限应变。当混杂比为60%时,可保证HFRP强度无折减的情况下,较玄武岩复合材料(Basalt Fiber Reinforced Polymer,BFRP)刚度提高93.4%,较碳纤维复合材料(Carbon Fiber Reinforced Polymer,CFRP)拉伸极限应变提高11.3%。  相似文献   
240.
为研究BA9916-II/CCF300复合材料加筋板的吸湿特性,在70℃/85%RH湿热环境中开展了吸湿实验,提出了基于厚度划分的Fick吸湿模型M_t=∑ni=1v_i[G_iM_(∞i)+M_(0i)(1-G_i)],并采用质量扩散模块进行了吸湿行为的有限元仿真。结果表明:提出的基于厚度划分的Fick吸湿模型能较好地描述该型结构的吸湿行为,具有较高的分析精度;但由于复合材料加筋板在吸湿后期存在阶段吸湿现象,Fick吸湿模型在该结构吸湿行为后期的描述上存在一定偏差;有限元仿真得到的吸湿动力曲线和水浓度分布结果验证了基于厚度划分吸湿模型的合理性,更好地还原了真实的吸湿过程与水分分布情况。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号