首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2364篇
  免费   483篇
  国内免费   540篇
航空   2503篇
航天技术   254篇
综合类   401篇
航天   229篇
  2024年   12篇
  2023年   44篇
  2022年   123篇
  2021年   167篇
  2020年   171篇
  2019年   168篇
  2018年   131篇
  2017年   167篇
  2016年   178篇
  2015年   164篇
  2014年   178篇
  2013年   170篇
  2012年   186篇
  2011年   169篇
  2010年   145篇
  2009年   140篇
  2008年   134篇
  2007年   105篇
  2006年   86篇
  2005年   100篇
  2004年   65篇
  2003年   61篇
  2002年   46篇
  2001年   43篇
  2000年   42篇
  1999年   46篇
  1998年   35篇
  1997年   31篇
  1996年   42篇
  1995年   26篇
  1994年   42篇
  1993年   34篇
  1992年   29篇
  1991年   22篇
  1990年   24篇
  1989年   26篇
  1988年   22篇
  1987年   10篇
  1986年   2篇
  1984年   1篇
排序方式: 共有3387条查询结果,搜索用时 312 毫秒
301.
减压腔宽度对刷式密封泄漏特性和滞后效应的影响   总被引:1,自引:0,他引:1  
对减压腔轴向宽度分别为0、04 mm和06 mm的基本型和两种低滞后刷式密封结构进行了静态和动态下压差升降和转子转速升降循环试验,并对其泄漏特性和滞后效应进行了研究。研究结果表明:压差大于02 MPa后,同一压差下的动态泄漏系数比静态降低约14%~20%;低滞后结构的密封性能优于基本型,其泄漏系数最高比基本型降低约20%;静态压差升降循环中,减压腔轴向宽度为06 mm的低滞后结构的滞后效应最强;动态的压差升降循环中,基本型结构的滞后效应最强。转子转速升降循环前后,w为06 mm结构泄漏系数减小约15%,滞后效应最强,减压腔轴向宽度为04 mm结构几乎不存在滞后效应;三种结构中,减压腔轴向宽度为04 mm的结构密封性能最优,滞后效应也最弱。  相似文献   
302.
为探究低展弦比压气机转子在风车状态下由压气机模式向涡轮模式转化过程中性能、内部流场结构以及气动损失的演化过程,提出了一种基于叶片和流体间能量传递的简化数值计算方法,以获得某转速下的风车状态临界流量点。在数值模拟的基础上,重点对比了同一转速线上压气机工况点(小流量工况)、风车临界点和涡轮工况点下叶尖泄漏损失的演化机制,同时探究了叶片通道内流动分离的演化过程。 结果显示,随着转速的增加,转子风车状态临界流量呈现近似线性的变化趋势。而同转速下随流量增大,叶尖泄漏流从吸力面流向压力面,并与压力面上的低能量流体进行掺混,造成了流动堵塞。同时,从压气机模式转向涡轮模式的过程中,叶尖区域的流动分离从吸力面分离转变为压力面分离,随后分离强度和尺寸逐渐增大,造成的气动损失显著增加;而在轮毂区域,流动分离始终保持吸力面分离,其分离尺度沿径向有所发展。  相似文献   
303.
为了研究文氏管出口张角对旋流杯综合性能的影响,对不同文氏管出口张角的双级旋流杯开展了流量特性、下游流场和雾化性能试验,并借助仿真对试验结果进行了分析。结果表明:文氏管出口张角对旋流杯流量以及流量系数无显著影响。回流区外侧扩张锥面轴向速度随出口张角的增大先增后减。出口张角的存在可增大文氏管出口湍动能,强化两级旋流气体之间相互剪切作用进而改善雾化性能,存在一个最佳的角度(本文研究参数范围内,该值为56°)使得液雾平均粒径最小且液滴尺寸分布最均匀。拟合了关于文氏管结构的可用于预估双级旋流杯SMD值的模型公式,预估值与试验值吻合较好,相对误差小于20%。  相似文献   
304.
侯晓亭  王锁芳  张凯  夏子龙 《推进技术》2020,41(9):2059-2069
为了降低压气机径向引气过程中的压力损失,在设计出新型翅片单元结构的基础上,研究了新型翅片单元结构对径向引气压力损失的影响规律,对不同转速、新型翅片结构的去旋系统开展了数值研究,得到了不同工况下压气机共转盘腔径向引气的流场结构及压力损失分布曲线。研究结构表明:新型翅片单元结构能够抑制盘腔内气流旋流比,降低引气压力损失;翅片单元通道宽度和高度均存在最佳值使得减涡器减阻效果较好,在优选结构翅片单元通道宽度L=0.78,通道高度R3=0.97的条件下,其减阻效果较简单盘腔模型提高86.5%。高低翅片结构能起到较好的减阻效果,随着单侧翅片高度的升高减阻效果逐渐增强,在本文结构下增加单侧翅片高度L1=0.3时减阻效果最优,且A侧或B侧翅片增加带来的减阻效益相同。一方面,最优高低翅片结构其减阻性能相比于简单盘腔模型、典型翅片式减涡器模型以及翅片单元通道宽度L=0.78,通道高度R3=0.97的结构模型分别提高87.5%,29%,7.8%;另一方面,最优高低翅片结构能够减轻翅片单元的质量,具有较高的工程应用价值。  相似文献   
305.
为了确定实际飞行使用条件下,发动机状态变化时,进排气系统损失对飞机气动特性的影响,本文针对翼吊短舱形式的发动机开展了缩比模型风洞试验,分别进行了基本构型与起飞构型下,马赫数0.1、0.15、0.2,攻角0°~15°变化,5种不同发动机状态条件下的风洞试验,通过数据分析,明确了该类型发动机推/阻力划分的基本方法,分析了发动机状态变化时飞机气动特性的改变及修正方法。风洞试验结果表明:发动机状态变化对飞机升阻特性影响明显,飞机设计研发阶段不能仅对短舱通流模型,或单一发动机状态下的动力短舱模型进行损失修正,必须建立合理的推/阻划分体系,对实际使用条件下,发动机状态变化引起的进排气损失进行修正。  相似文献   
306.
郑笑天  王锁芳  韦光礼 《推进技术》2020,41(10):2222-2227
为对比不同形状接受孔的预旋系统内气流流动特性,通过数值模拟方法,对带有不同形状接受孔的预旋系统进行了研究。研究发现:收缩型接受孔入口截面气流流通面积较大,相对速度较小,在预旋系统中的性能最优,其次是类梯型,最后是直孔型。同一旋转雷诺数下,带收缩型接受孔的预旋系统无量纲温降较直孔型提高5.8%,总压损失系数降低3.0%。三种类型接受孔的预旋系统无量纲温降和总压损失系数均随进出口压比的增加而增大,在相同压比下,收缩型接受孔预旋系统无量纲温降最大,总压损失系数最小。  相似文献   
307.
宋超  李伟斌  周铸  刘红阳  蓝庆生 《航空学报》2020,41(5):623687-623687
在多目标优化中,Pareto解集是一个分段连续的k维流形,这一规律被传统进化算法所忽略。本文提出了一种基于流形结构重建的多目标优化算法,首先利用流形结构重建方法完成解集分布从目标空间到设计空间的映射,建立解集的概率分布,并在目标空间中扩展流形结构,从而借助解集在目标空间的推进来指导优化算法的快速演化。数值算例表明本文算法对于具有不同特征的Pareto前沿具有很好的适应性,能够极大提高算法的收敛效率。多目标气动优化算例验证,本文算法相比于常规多目标进化算法能够减少约80%的计算量,极大程度缩短了气动设计的周期。  相似文献   
308.
许玮健  杨明绥  武卉  王萌  梁宝逵 《航空学报》2020,41(12):123943-123943
湍流控制屏(TCS)是航空发动机风扇噪声试验必备的试验设施。由于湍流控制屏的作用,风扇前传噪声向远场传播时会产生传递损失。通过对湍流控制屏的声学校准,可以获取湍流控制屏的声学修正量,从而实现对风扇前传噪声的修正。本文结合实际工程应用条件,分析了湍流控制屏重复安装的位置精度、校准声源重复性、稳定性、校准声源位置偏差、温湿度修正等因素对湍流控制屏声学修正量精度的影响;结合上述影响因素,对湍流控制屏160 Hz~40 kHz的声学修正量的特征进行分析,总结工程应用中湍流控制屏高精度声学校准的注意事项,提出湍流控制屏的声学校准应包含测量不确定度。  相似文献   
309.
针对涡轮进口导向叶片进口马赫数低、前部负荷小的特点,采用前缘截断思路构建了高负荷涡轮叶型,并采用Pritchard 11参数法进行重构设计。采用数值计算和平面叶栅试验开展了研究和分析。结果表明:高负荷叶型吸力面前缘马赫数显著提升,增加了叶片前部负荷。喉部峰值马赫数基本不变,但位置前移,负荷分布均匀性提高。叶型的马赫数特性和攻角特性表明,高负荷叶型在不同攻角和马赫数下,均能获得较低的总压损失,其中在设计马赫数,叶型负荷提升1倍的情况下,总压损失系数降低259%。   相似文献   
310.
为了检验某型航空发动机燃油喷嘴改进设计效果,利用相位多普勒粒子分析仪对燃油喷嘴的雾化性能参数进行试验研究。得到雾化液滴的索太尔平均直径的空间分布、轴向平均速度、脉动速度及其湍流度的分布情况。结果表明:轴向平均速度呈凹盆状分布,脉动速度呈双峰状分布;喷雾中心湍流度大,喷雾边缘湍流度小。随着供油压力增大,在相同测试截面上,喷雾的范围和中心区域粒径变大,边缘位置粒径变小。在相同供油压力下,随着与喷嘴距离的增加,喷雾范围增大,喷雾的轴向平均速度和脉动速度减小,轴向速度的湍流度波动幅度减小。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号