首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   12篇
  国内免费   13篇
航空   55篇
航天技术   157篇
综合类   12篇
航天   8篇
  2023年   7篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   10篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   17篇
  2013年   12篇
  2012年   15篇
  2011年   23篇
  2010年   19篇
  2009年   12篇
  2008年   14篇
  2007年   5篇
  2006年   6篇
  2005年   38篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1997年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1985年   1篇
排序方式: 共有232条查询结果,搜索用时 328 毫秒
111.
考虑危险天气的终端区动态容量评估   总被引:1,自引:0,他引:1  
危险天气是影响航空运输飞行安全和导致航班延误的重要原因。随时间变化的危险天气决定了空域的动态容量。准确、及时的动态容量预测可以提高飞行安全性,也可以提高管制员的工作效率。在分析随时间变化的危险天气的基础上.提出用实时飞行受限区划设来表征危险天气:并给出了终端区空域网络图;应用最大流最小割理论找到受天气影响的终端区空域容量的瓶颈,建立了终端区动态容量评估模型;通过对某终端区危险天气进行算例分析.验证了模型的有效性和可行性。  相似文献   
112.
Since more than one decade ago, several institutions started to offer a large variety of Operative Space Weather (SWx) products. This is of major importance because Space Weather events can affect aviation communications, global positioning systems, grid electric power, satellite technologies, and human health in space. The scientific potential on solar-terrestrial physics in Argentina motivated the creation of an interdisciplinary Laboratory of Space Weather in Argentina. The Argentinean Space Weather Laboratory (in Spanish ‘Laboratorio Argentino de Meteorología del esPacio’, LAMP) was initiated in 2016, and it carries out daily monitoring of real-time information (space and ground-based instruments) on Space Weather. The information is synthesized on a weekly bulletin as a summary of the Space Weather conditions, and it is posted on a website (spaceweather.at.fcen.uba.ar). The analyzed information includes own data and of other centers that offer them publicly, and it is also analyzed and discussed later on, during monthly briefings. In particular, one of the regional products that is included in the briefing discussions and it was developed by LAMP in collaboration with INPE-EMBRACE, involves Vertical Total Electron Content (VTEC) maps in the Argentinean region. LAMP set up a Space Weather Laboratory in the Antarctic peninsula, in the Argentine Marambio base, where a Water Cherenkov radiation Detector (WCD) was installed during the Argentinean Antarctic campaign (January-March of 2019). This detector is the southern node of a Latin American Collaboration (LAGO, Latin American Giant Observatory), which is a network of WCDs installed throughout more than 10 Latin American countries.  相似文献   
113.
Satellite radiances and in-situ observations are assimilated through Weather Research and Forecasting Data Assimilation (WRFDA) system into Advanced Research WRF (ARW) model over Iran and its neighboring area. Domain specific background error based on x and y components of wind speed (UV) control variables is calculated for WRFDA system and some sensitivity experiments are carried out to compare the impact of global background error and the domain specific background errors, both on the precipitation and 2-m temperature forecasts over Iran. Three precipitation events that occurred over the country during January, September and October 2014 are simulated in three different experiments and the results for precipitation and 2-m temperature are verified against the verifying surface observations. Results show that using domain specific background error improves 2-m temperature and 24-h accumulated precipitation forecasts consistently, while global background error may even degrade the forecasts compared to the experiments without data assimilation. The improvement in 2-m temperature is more evident during the first forecast hours and decreases significantly as the forecast length increases.  相似文献   
114.
回顾了空中交通系统容量评估的基本方法,随后以恶劣天气为背景,介绍了空中交通系统不同组成单元中容量研究的对象与方法.分析表明现有研究存在缺乏容量短周期评估方法、容量定义多样化、忽略管制员负荷等问题,并提出了后续研究的思路.  相似文献   
115.
A more flexible policy basis from which to manage our planet in the 21st century is desirable. As one contribution, we note that synergies between space exploration and the preservation of our habitat exist, and that protecting life on Earth requires similar concepts and information as investigations of life beyond the Earth, including the expansion of human presence in space. Instrumentation and data handling to observe both planetary objects and planet Earth are based on similar techniques. Moreover, while planetary surface operations are conducted under different conditions, the technology to probe the surface and subsurface of both the Earth and other planets requires similar tools, such as radar, seismometers, and drilling devices. The Earth observation community has developed some exemplary tools and has featured successful international cooperation in data handling and sharing that could be equally well applied to robotic planetary exploration. Here we propose a network involving both communities that will enable the interchange of scientific insights and the development of new policies and management strategies. Those tools can provide a vital forum through which the management of this planet can be assisted, and in which a new bridge between the Earth-centric and space-centric communities can be built.  相似文献   
116.
Data assimilation in conventional meteorological applications uses measurements in conjunction with a physical model. In the case of the ionised region of the upper atmosphere, the ionosphere, assimilation techniques are much less mature. The empirical model known as the International Reference Ionosphere (IRI) could be used to augment data-sparse regions in an ionospheric now-cast and forecast system. In doing so, it is important that it does not introduce systematic biases to the result. Here, the IRI model is compared to ionospheric observations from the Global Positioning System satellites over Europe and North America. Global Positioning System data are processed into hour-to-hour monthly averages of vertical Total Electron Content using a tomographic technique. A period of twelve years, from January 1998 to December 2009, is analysed in order to capture variations over the whole solar cycle. The study shows that the IRI model underestimates Total Electron Content in the daytime at solar maximum by up to 37% compared to the monthly average of GPS tomographic images, with the greatest differences occurring at the equinox. IRI shows good agreement at other times. Errors in TEC are likely due to peak height and density inaccuracies. IRI is therefore a suitable model for specification of monthly averages of Total Electron Content and can be used to initialise a data assimilation process at times away from solar maximum. It may be necessary to correct for systematic deviations from IRI at solar maximum, and to incorporate error estimation into a data assimilation scheme.  相似文献   
117.
From 1 January 1986 through 1 January 2008, GOES satellites recorded 170 solar proton events. For 169 of these events, we estimated effective and equivalent dose rates and doses of galactic cosmic radiation (GCR) and solar cosmic radiation (SCR), received by aircraft occupants on simulated high-latitude flights. Dose rate and dose estimates that follow are for altitudes 30, 40, 50, and 60 kft, in that order.  相似文献   
118.
The solar photon output from the Sun, which was once thought to be constant, varies considerably over time scales from seconds during solar flares to years due to the solar cycle. This is especially true in the wavelengths shorter than 190 nm. These variations cause significant deviations in the Earth and space environment on similar time scales, which then affects many things including satellite drag, radio communications, atmospheric densities and composition of particular atoms, molecules, and ions of Earth and other planets, as well as the accuracy in the Global Positioning System (GPS). The Flare Irradiance Spectral Model (FISM) is an empirical model that estimates the solar irradiance at wavelengths from 0.1 to 190 nm at 1 nm resolution with a time cadence of 60 s. This is a high enough temporal resolution to model variations due to solar flares, for which few accurate measurements at these wavelengths exist. This model also captures variations on the longer time scales of solar rotation (days) and solar cycle (years). Daily average proxies used are the 0–4 nm irradiance, the Mg II c/w, F10.7, as well as the 1 nm bins centered at 30.5 nm, 121.5 (Lyman Alpha), and 36.5 nm. The GOES 0.1–0.8 nm irradiance is used as the flare proxy. The FISM algorithms are given, and results and comparisons are shown that demonstrate the FISM estimations agree within the stated uncertainties to the various measurements of the solar Vacuum Ultraviolet (VUV) irradiance.  相似文献   
119.
Intense geomagnetically induced currents (GIC) can hamper rail traffic by disturbing signaling and train control systems. GIC threats have been a concern for technological systems at high-latitude locations due to geomagnetic disturbances driven by substorm expansion electrojet or convection electrojet intensifications. However, other geomagnetic storm processes such as storm sudden commencement (SSC) and geomagnetic pulsations can also cause GIC concerns for technological systems. We present in this paper the first evidence based on statistical data for links between geomagnetic disturbances and faulty operations (anomalies) in the functioning of railway automatics and telemetry. We analyze anomalies of automatic signaling and train control equipment which occurred in 2004 on the East-Siberian Railway (corrected geomagnetic latitude m = 46–51°N and longitude λm = 168–187°E). Our results reveal a seasonal effect in the number of anomalies per train similar to the one observed in geomagnetic activity (Kp, Ap, Dst indices). We also found an increase by a factor of 3 in the total duration of daily anomalies during intense geomagnetic storms (local geomagnetic index specific to Siberian Observatory Amax > 30), with a significant correlation between the daily sum of durations of anomalies with geomagnetic activity. Special attention was paid to failures not related to recognized technical malfunctions. We found that the probability of these failures occurring in geomagnetically disturbed periods was 5–7 times higher than the average anomaly occurrence.  相似文献   
120.
大型客机气候实验室试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为确保飞机在各种极端气象条件下飞行的安全性,验证设计运行环境包线内各系统的功能与性能,需开展相应的试验试飞活动,极端自然环境有时间窗口难以捕捉、持续时间短、等待周期长的特点,但气候实验室可人工模拟高温、低温、冰雾、冻雨、吹雪等极端气象条件,不受自然环境的限制,可有效提升试验效率,缩短试飞周期,是现代大型客机进行极端气候试验的有效手段。介绍了气候实验室的意义与作用、全球气候实验室的情况,重点介绍了麦肯利气候实验室的试验条件及试验型号情况,并基于某型号实际经验,详细阐述了典型气候实验室试验的目的、内容与方法、风险及风险降低措施,为后续大型客机极端气候试验提供了参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号