首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   753篇
  免费   128篇
  国内免费   79篇
航空   370篇
航天技术   204篇
综合类   99篇
航天   287篇
  2024年   10篇
  2023年   18篇
  2022年   40篇
  2021年   28篇
  2020年   16篇
  2019年   17篇
  2018年   29篇
  2017年   25篇
  2016年   24篇
  2015年   36篇
  2014年   56篇
  2013年   48篇
  2012年   47篇
  2011年   59篇
  2010年   35篇
  2009年   36篇
  2008年   28篇
  2007年   44篇
  2006年   44篇
  2005年   54篇
  2004年   37篇
  2003年   34篇
  2002年   27篇
  2001年   24篇
  2000年   20篇
  1999年   19篇
  1998年   14篇
  1997年   11篇
  1996年   6篇
  1995年   12篇
  1994年   7篇
  1993年   6篇
  1992年   9篇
  1991年   4篇
  1990年   10篇
  1989年   5篇
  1988年   13篇
  1987年   6篇
  1986年   2篇
排序方式: 共有960条查询结果,搜索用时 15 毫秒
941.
在时变耦合复杂动态网络同步的基础上研究复杂网络节点间的保密通信,并以Lorenz方程为复杂网络节点的状态方程为例,验证了复杂网络的同步在保密通信中应用的有效性。  相似文献   
942.
相比于地面网络,空间通信链路具有较长的延迟、频繁的中断、较高的误码率及上下行链路非对称等特性,互联网成熟的网络技术并不适用,对网络可靠传输性能的保障提出了挑战。不同于空间IP协议体系方案,针对空间通信链路特性,采用多种传输机制兼容的DTN(delay tolerant networking)协议架构。重点针对链路非对称、和信道误码率等特性,研究对保障可靠传输的TCP和LTP两种传输机制的性能制约,并给出LTP(Licklider transport protocol)机制的跨层包尺寸优化模型。基于半实物仿真平台,构建静止轨道GEO以下的空间通信场景,进行真实数据流仿真,分析链路因素对协议传输性能的影响。仿真结果表明,在近地端误码率和信道非对称比例较小的空间通信场景中,仍可以采用TCP机制保障可靠传输,但对于误码率和信道非对称比例较高的通信场景,应考虑采用LTP传输机制保障通信的有效性和可靠性。  相似文献   
943.
陶坤宇  付森  杨奇 《遥测遥控》2022,43(4):113-118
随着当前低轨卫星组网星座计划的日益增加,对卫星间高精度校时、测距需求也越来越迫切。提出基于直调直检IM/DD(Intensity Modulation with Direct Detection)的测距技术的实现方法,使其能同时兼顾测距精度及系统成本。基于IM/DD的测距是利用高精度的秒脉冲到达时间来测量距离。使用IM/DD光通信的数据传输方式,在正常的数据帧传输中插入少量的测距信息,无需中断正常的通信模式,也无需网络时钟频率同步,数据帧的发送周期也无需与秒脉冲保持同步关系,即可使用双向单程测距方法进行测距。使用秒脉冲对本地时钟进行频率测量,对测距过程参数进行修正,只需要采用普通晶体振荡器作为本地时钟源,不需要使用高精度测距通常所需的全网络同步时钟信号或者高稳定度时钟源,便可以达到IM/DD通信码元时间量级的测距准确度和精确度,同时降低了时频同步系统的复杂度、对元器件的要求以及整个通信测距系统的成本,解决了现有技术中测距精度及系统成本不易同时兼顾的问题。  相似文献   
944.
随着人们对定位安全和定位准确性要求的提升,仅仅依赖卫星导航系统已经不能满足用户在各种复杂环境下的个性化定位需求,在此背景下,通信导航一体化技术应运而生。移动通信网络具有覆盖广、用户数量大和安全保密性好等优点,将通信系统作为卫星导航系统的有效补充,可以有效提升导航系统的性能。导航通信融合技术已经成为导航领域未来发展的重要技术热点,但目前缺乏清晰的导通融合架构和导通融合方式。从导通融合的技术层面进行划分,提出了波形融合、信息融合、硬件融合三种导通融合方式,分析了通信系统的辅助信息对导航系统精度和抗干扰能力的影响,以及两种典型的导通融合系统的优缺点,并对其未来的发展进行了展望,补充了导航通信融合技术的基础理论,对导通融合技术的发展具有重大意义。  相似文献   
945.
与射频通信相比,空间激光通信具有传输速率高、保密性能强、终端功耗低等优点,目前已成为当前通信领域的一个研究热点。同时,空间激光通信也面临着一些严峻的技术挑战,如大气湍流导致空间激光通信的信道情况十分复杂,复杂的信道会引发信号光强度起伏剧烈,信标光跟踪与瞄准困难,接收端的信号光场波前畸变严重等。为了提升空间激光通信在复杂信道环境中的性能,学者们将深度学习技术引入到空间激光通信系统中。多项研究表明,深度学习在空间激光通信的诸多方面表现出了优越的信息处理能力。对近年来深度学习技术在空间激光通信信号处理与检测,信标光捕获与跟踪以及波前畸变探测与校正等方面的应用做一全面梳理,并对用于空间激光通信的深度学习技术的前景进行展望。  相似文献   
946.
复合轴系统通过粗瞄结构和精瞄机构配合,解决了空间光通信大角度和高精度跟踪之间的矛盾,是实现高速率空间光通信的重要手段。但是粗瞄和精瞄配合工作也给复合轴系统带来了复杂的解耦问题,使整个系统的鲁棒性降低,在跟踪速率变化较快的目标时,容易出现振荡,甚至使系统处于不稳定状态。以复合轴系统为研究基础,通过伯德图对系统的跟踪带宽、精度和稳定性进行分析,得到解耦过程是影响复合轴系统稳定性的主要原因。提出了基于跟踪微分器的线性自抗扰复合轴控制解耦方案,在保证系统精度的情况下,抑制系统在解耦过程中可能出现的振荡发散现象。在卫星轨道模拟平台上进行复合轴跟踪实验,实验结果证明,在最大角加速度0.32°/s2的轨道运动和最大角加速度2.26°/s2的微振动情况下,改进复合轴控制有效地提高了系统跟踪的稳定性,最终跟踪精度优于1 μrad(3σ)。  相似文献   
947.
瞿伟哲 《遥测遥控》2023,44(1):57-63
基于PSK调制的数字通信系统在无线通信工程实践中有着广泛的应用,由于受到各种条件的限制,从实际工程系统接收到的PSK数字通信信号在教学科研中不易获得,而PSK调制仿真数据则可以自己产生。在掌握通信原理和仿真技术的基础上利用Matlab实现对BPSK、DPSK、QPSK、DQPSK、8PSK、π/4-DQPSK、OQPSK等数字通信信号源的模拟仿真,可对调制体制、工作频率、传输码率、采样频率、信道特征等参数进行灵活设置,并按要求生成规定格式的DAT数据文件,可作为调制方式识别软件的训练和测试样本。结合模方谱、平方谱、四次方谱、八次方谱等谱线参数特征,同时结合星座图和眼图进行基于PSK调制的数字通信信号的调制体制判别和验证。  相似文献   
948.
针对空间激光通信网络接入节点多路激光链路传输需求,基于高非线性光纤中四波混频参量效应,并结合色散控制,开展全光合路处理技术研究。采用VPI 10.0模拟平台构建了时间透镜全光合路系统,验证了4路速率为10 Gbps的差分相移键控DPSK(Differential Phase Shift Keying)信号光以及通断键控调制OOK(On-Off Keying)和DPSK混合制式信号光的全光合路可行性,并对全光合路技术实现中色散、光功率等关键参数对系统性能的影响进行了分析,为实际系统的设计和应用提供数据支撑。所提出的全光合路技术具有数据处理带宽大、通信制式兼容且系统复杂度低等优点,可有效降低空间激光通信网络的资源需求与载荷成本,为下一代空间激光骨干网的发展与全面应用提供有效技术支撑。  相似文献   
949.
针对星地激光通信的大气湍流导致信号光损伤这一问题,实验搭建了一种能够补偿大气湍流的空间激光通信系统,采用模式分集接收结合最大比合并方法对大气湍流进行补偿,采用相干探测技术对高阶调制信号进行光电探测。在不同湍流强度下进行了传输实验,结果表明:模式分集空间激光通信系统的性能相比较于单模光纤接收系统有较大提升,随着湍流强度的增加,性能提升更加显著。在弱、中、强三种湍流强度以及相同目标误码率情况下,模式分集系统相比单模光纤接收系统分别降低了约4.2 dB、5.1 dB 和 5.5 dB的链路损耗。在弱、中、强三种湍流强度以及相同目标中断概率下,模式分集接收系统相比单模光纤接收系统分别降低了约3 dB、5.9 dB 和 4.3 dB的链路损耗。  相似文献   
950.
分数阶不确定混沌系统鲁棒投影同步控制   总被引:1,自引:0,他引:1       下载免费PDF全文
基于滑模变结构控制理论,选取了一种分数阶滑模面,针对分数阶系统不确定项上界已知情况,提出了一种鲁棒控制方法,将这种控制方法与范数不等式相结合对系统的稳定性进行了分析。该控制器能够很好地抑制不确定因素对误差系统的影响,能够快速实现驱动系统与响应系统的同步。最后,将该鲁棒控制策略应用于分数阶混沌系统数字保密通信中,数值仿真验证了该方案的正确性和有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号