首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   25篇
  国内免费   2篇
航空   28篇
航天技术   102篇
综合类   3篇
航天   39篇
  2023年   5篇
  2022年   5篇
  2021年   5篇
  2020年   6篇
  2019年   8篇
  2018年   5篇
  2017年   4篇
  2015年   4篇
  2014年   11篇
  2013年   15篇
  2012年   13篇
  2011年   17篇
  2010年   9篇
  2009年   11篇
  2008年   8篇
  2007年   7篇
  2006年   4篇
  2005年   11篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   6篇
  1997年   2篇
  1995年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
81.
The application of the Global Positioning System (GPS) radio occultation (RO) method to the atmosphere enables the determination of height profiles of temperature, among other variables. From these measurements, gravity wave activity is usually quantified by calculating the potential energy through the integration of the ratio of perturbation and background temperatures between two given altitudes in each profile. The uncertainty in the estimation of wave activity depends on the systematic biases and random errors of the measured temperature, but also on additional factors like the selected vertical integration layer and the separation method between background and perturbation temperatures. In this study, the contributions of different parameters and variables to the uncertainty in the calculation of gravity wave potential energy in the lower stratosphere are investigated and quantified. In particular, a Monte Carlo method is used to evaluate the uncertainty that results from different GPS RO temperature error distributions. In addition, our analysis shows that RO data above 30 km height becomes dubious for gravity waves potential energy calculations.  相似文献   
82.
The Earth’s gravity field can be measured with high precision by constructing the purely gravitational orbit of the inner-satellite in Inner-formation Flying System (IFS), which is independently proposed by Chinese scholars and offers a new way to carry out gravity field measurement by satellite without accelerometers. In IFS, for the purpose of quickly evaluating the highest degree of recovered gravity field model and geoid error as well as analyzing the influence of system parameters on gravity field measurement, an analytical formula was established by spectral analysis method. The formula can reflect the analytical relationship between gravity field measurement performance and system parameters such as orbit altitude, the inner-satellite orbit determination error, the inner-satellite residual disturbances, data sampling interval and total measurement time. This analytical formula was then corrected by four factors introduced from numerical simulation of IFS gravity field measurement. By comparing computation results from corrected analytical formula and the actual gravity field measurement performance by CHAMP, the correctness and rationality of this analytical formula were verified. Based on this analytical formula, the influences of system parameters on IFS gravity field measurement were analyzed. It is known that gravity field measurement performance is a monotone decreasing function of orbit altitude, the inner-satellite orbit determination error, the inner-satellite residual disturbances, data sampling interval and the reciprocal of total measurement time. There is a match relationship between the inner-satellite orbit determination error and residual disturbances, in other words, the change rate of gravity field measurement performance with one of them is seriously restricted by their relative size. The analytical formula can be used to quantitatively evaluate gravity field measurement performance fast and design IFS parameters optimally. It is noted that the analytical formula and corresponding conclusions are applied to any gravity satellite which measures gravity field by satellite perturbation orbit.  相似文献   
83.
We present results of the spectral analysis of data series of Doppler frequency shifted signals reflected from the ionosphere, using experimental data received at Kazan University, Russia. Spectra of variations with periods from 1 min to 60 days have been calculated and analyzed for different scales of periods. The power spectral density for spring and winter differs by a factor of 3–4. Local maxima of variation amplitude are detected, which are statistically significant. The periods of these amplitude increases range from 6 to 12 min for winter, and from 24 to 48 min for autumn. Properties of spectra for variations with the periods of 1–72 h have been analyzed. The maximum of variation intensity for all seasons and frequencies corresponds to the period of 24 h. Spectra of variations with periods from 3 to 60 days have been calculated. The maxima periods of power spectral density have been detected by the MUSIC method for the high spectral resolution. The detected periods correspond to planetary wave periods. Analysis of spectra for days with different level of geomagnetic activity shows that the intensity of variations for days with a high level of geomagnetic activity is higher.  相似文献   
84.
In the framework of satellite-only gravity field modeling, satellite laser ranging (SLR) data is typically exploited to recover long-wavelength features. This contribution provides a detailed discussion of the SLR component of GOCO02S, the latest release of combined models within the GOCO series. Over a period of five years (January 2006 to December 2010), observations to LAGEOS-1, LAGEOS-2, Ajisai, Stella, and Starlette were analyzed. We conducted a series of closed-loop simulations and found that estimating monthly sets of spherical harmonic coefficients beyond degree five leads to exceedingly ill-posed normal equation systems. Therefore, we adopted degree five as the spectral resolution for real data analysis. We compared our monthly coefficient estimates of degree two with SLR and Gravity Recovery and Climate Experiment (GRACE) time series provided by the Center for Space Research (CSR) at Austin, Texas. Significant deviations in C20 were noted between SLR and GRACE; the agreement is better for the non-zonal coefficients. Fitting sinusoids together with a linear trend to our C20 time series yielded a rate of (−1.75 ± 0.6) × 10−11/yr; this drift is equivalent to a geoid change from pole to equator of 0.35 ± 0.12 mm/yr or an apparent Greenland mass loss of 178.5 ± 61.2 km3/yr. The mean of all monthly solutions, averaged over the five-year period, served as input for the satellite-only model GOCO02S. The contribution of SLR to the combined gravity field model is highest for C20, and hence is essential for the determination of the Earth’s oblateness.  相似文献   
85.
Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.  相似文献   
86.
针对多旋转关节空间太阳能电站构型,利用基于能量等效原理的连续体等效方法将其等效为柔性梁模型,并考虑重力梯度影响,建立了姿态运动与结构振动的耦合动力学模型;结合Runge-Kutta 法和Newmark法的优点,提出了适用于求解姿态运动与结构振动耦合动力学方程的改进算法,相比于经典Runge-Kutta 法大幅提高了效率;利用改进算法得到了不同参数下的动力学响应。在此基础上,推导了结构振动量级随结构尺寸的六次方量级增加的规律,仿真结果表明尺寸过大引发不稳定现象;分析了姿态运动和重力梯度对结构振动频率和振幅的影响;发现了姿态运动周期受结构柔性影响而增大的现象,这种现象在低轨以及大初始姿态角下影响更为明显。  相似文献   
87.
Based on an advanced numerical model for excited hydroxyl (OH*) we simulate the effects of gravity waves (GWs) on the OH*-layer in the upper mesosphere. The OH* model takes into account (1) production by the reaction of atomic hydrogen (H) with ozone (O3), (2) deactivation by atomic oxygen (O), molecular oxygen (O2), and molecular nitrogen (N2), (3) spontaneous emission, and (4) loss due to chemical reaction with O. This OH* model is part of a chemistry-transport model (CTM) which is driven by the high-resolution dynamics from the KMCM (Kühlungsborn Mechanistic general Circulation Model) which simulates mid-frequency GWs and their effects on the mean flow in the MLT explicitly. We find that the maximum number density and the height of the OH*-layer peak are strongly determined by the distribution of atomic oxygen and by the temperature. As a results, there are two ways how GWs influence the OH*-layer: (1) through the instantaneous modulation by O and T on short time scales (a few hours), and (2) through vertical mixing of O (days to weeks). The instantaneous variations of the OH*-layer peak altitude due to GWs amount to 5–10 km. Such variations would introduce significant biases in the GW parameters derived from airglow when assuming a constant pressure level of the emission height. Performing a sensitivity experiment we find that on average, the vertical mixing by GWs moves the OH*-layer down by ~2 to 7 km and increases its number density by more than 50%. This effect is strongest at middle and high latitudes during winter where secondary GWs generated in the stratopause region account for large GW amplitudes.  相似文献   
88.
星际探测借力飞行轨道的混合设计方法研究   总被引:2,自引:0,他引:2  
乔栋  崔平远  徐瑞 《宇航学报》2010,31(3):655-661
以金星借力探测火星为背景,针对传统借力飞行轨道设计方法中存在的问题,提出了 一种星际探测借力飞行轨道的混合设计方法。该方法在分析借力天体特性的基础上,采用等 高线图给出可能出现借力参数匹配的区域,提出“软匹配”策略进行轨道拼接,采用混合优 化设计方法得到轨道优化设计参数,有效地解决了传统方法对一些满足约束条件转移轨道方 案的遗漏问题。本文以2017-2018年金星借力探测火星为例给出了设计结果,设计参数与 M.Okutsu给出的一致,同时还得到了该参数区域一个新的借力轨道转移方案。此外,本文还 对2010-2018年采用金星借力探测火星的转移轨道进行了研究,给出了金星借力探测火星 较好的设计参数区域,这些研究对于未来可能的火星探测任务的设计与规划具有重要的参考 意义。
  相似文献   
89.
抗干扰重力加速度积分粗对准算法   总被引:4,自引:0,他引:4  
赵长山  秦永元  魏亮 《宇航学报》2010,31(10):2335-2339
针对强角运动和线振动干扰下捷联惯导无法根据陀螺和加速度计的输出直接计算姿态阵的问题,提出了抗干扰重力加速度积分解析粗对准算法。该算法利用陀螺跟踪载体在惯性空间的角运动,利用重力加速度矢量在惯性空间投影的积分作为参考矢量进行对准以隔离角运动干扰的影响。根据参考矢量的时域特性,采用最小二乘算法对包含线振动干扰的参考矢量进行拟合,利用拟合结果进行姿态矩阵解算以抑制线振动干扰的影响。仿真结果表明,该算法既具有角运动干扰隔离能力,又具有线振动干扰抑制能力,能在强角运动和线振动干扰同时存在的条件下迅速完成粗对准。
  相似文献   
90.
已有充分的证据表明, 大气对流层的雷暴迹象是大气中间层重力波活动的显著代表源.在雷暴迹象的上方, 通过火箭已观测到大气中间层出现的热效应, 也已通过雷 达探测到大气平流层出现的上行重力波, 从地面和卫星平台上观察到夜间气辉有序而 成环状的重力波波形. 所有这些实验结果都与位于观测点下方的雷暴活动有紧密联系. 此类雷暴通常主要集中在中国东部沿海以及地球其他沿海海湾地域. 关于此类雷暴对大 气中间层的影响尚未被充分研究和了解. 为能有效地探究其成因, 利用所开发的一个二维计算机数值模型模拟和研究大气对流层的雷暴源所引发的上行重力波, 进而揭示 此类重力波产生的基本物理机理, 及其在大气中间层的能量耗散. 通过模拟研究发现, 雷暴源可以大面积高强度地聚集和释放积雨云的能量, 当这种周期性的对流变化引发大气对流层的不稳定性后, 就会有圆柱体重力波的产生和传播.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号