首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   158篇
  国内免费   65篇
航空   664篇
航天技术   62篇
综合类   52篇
航天   48篇
  2024年   3篇
  2023年   25篇
  2022年   29篇
  2021年   52篇
  2020年   35篇
  2019年   48篇
  2018年   32篇
  2017年   40篇
  2016年   43篇
  2015年   26篇
  2014年   38篇
  2013年   29篇
  2012年   39篇
  2011年   45篇
  2010年   54篇
  2009年   33篇
  2008年   44篇
  2007年   33篇
  2006年   24篇
  2005年   13篇
  2004年   9篇
  2003年   9篇
  2002年   17篇
  2001年   14篇
  2000年   10篇
  1999年   15篇
  1998年   5篇
  1997年   13篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1989年   12篇
  1988年   2篇
  1986年   2篇
排序方式: 共有826条查询结果,搜索用时 171 毫秒
771.
微米铁粉填充硅橡胶复合材料的压阻性能研究   总被引:1,自引:0,他引:1  
利用磁场辅助硫化工艺,制备了含有排列的微米铁粉的硅橡胶复合材料,测量了体系的压阻特性.结果表明,该复合材料显示丰富的压阻特性,初始电阻大于1010Ω的体系显示负压阻特性,而小于1010Ω的体系显示正压阻特性;填充了10%,20%,50%(质量分数)铁粉的硅橡胶在加载压力0.2MPa前后出现正压阻渗流转变,电阻变化达10...  相似文献   
772.
航空发动机外部管路系统的管路建模和流动分析分别在CAD和CAE软件中进行,在管路设计及改进时往往需在2种软件之间进行重复建模和数据传递,耗费大量时间与资源。为此,基于UG/Open API技术,通过对UG管路模型几何与拓扑信息进行研究,利用流体仿真软件FOCUSS-FS开发了UG NX3.0工作平台下的内嵌式管路流阻分析模块,实现了发动机管路建模时的实时在线流动分析,极大地提高了外部管路设计效率。  相似文献   
773.
赵子晨  何立明  肖阳  代胜吉  张倩 《推进技术》2017,38(7):1579-1587
基于横向槽结构和等离子体气动激励的新型流场调节方法,采用RNG k-ε湍流模型,数值计算分析了常规圆形孔、带横向槽以及带等离子体气动激励等不同气膜冷却结构的流场特性、温度场特性和冷却效率,揭示了等离子体激励器复合横向槽新型气膜冷却结构的冷却机理及规律。结果表明:圆形孔气膜冷却结构,气膜孔出流与主流混合强烈,在流场中形成了肾形涡对,冷流被逐渐抬离壁面,热流被卷吸到冷流下方,壁面的冷却效果最差;冷流经过等离子体激励器的气动激励后,产生了反肾形涡对,使得肾形涡对的平均涡量减小了42.64%,同时诱导冷流贴壁流动;横向槽的存在使得气膜孔出流在展向分布更宽,更贴近壁面,肾形涡对的强度较弱;在横向槽和等离子体气动激励的共同作用下,反肾形涡对的强度最大,使冷流的展向分布区域更大并贴近壁面流动。与圆形孔气膜冷却结构相比,在吹风比M=1.0下,带等离子体激励器、带横向槽和"等离子体激励器+横向槽"等三种气膜冷却结构的全局平均气膜冷却效率分别提高了181.6%,73.5%和200.5%。  相似文献   
774.
采用大涡模拟(LES)方法对有/无等离子体激励条件下不同射流角时的平板气膜冷却流场进行了对比研究。结果表明:随着射流角的增大,冷却射流对主流的穿透率与气膜孔下游回流区的范围增大,发卡涡的强度及其抬升射流的能力增强并远离壁面,导致气膜冷却效率降低,但射流角为90°时部分低能冷却流体会进入回流区引起气膜冷却效率升高,故气膜冷却效率在射流角为35°时最大,在射流角为60°时最小;等离子体激励削弱了冷却射流对主流的穿透率,其下拉诱导作用也使得发卡涡头部受到的库塔 儒科夫斯基升力以及水平涡腿间的相互诱导力减小,抑制了发卡涡的发展并促使其破碎为近壁条带结构,从而提高了气膜冷却效率,且射流角越小,上述作用效果越明显,当射流角为35°时中心线气膜冷却效率提高了55%。   相似文献   
775.
设计以翘曲S1流面优化为核心的多级涡轮气动优化流程,研究气膜冷气、尾缘冷气、端壁冷气对优化可靠性和有效性的影响。该流程能够对多种叶高处带叶片冷气的多级翘曲S1流面进行并行优化,提高了优化的可靠性。对两级高压涡轮给定三种叶片冷气方案:包括气膜冷气和尾缘冷气的叶身冷气、气膜冷气、无叶片冷气,分别进行翘曲S1流面优化设计。优化后翘曲S1流面平均气动效率分别提高0.20%、0.38%、0.07%,涡轮气动效率分别提高0.33%、0.32%、0.26%,优化的可靠性较好。分析可知,气膜冷气增强了径向二次流动,降低了优化的有效性,尾缘冷气则部分削弱了气膜冷气的消极作用;下端壁冷气较上端壁冷气对端区二次流的作用强,因此前者对翘曲S1流面优化的积极作用更好。  相似文献   
776.
为了研究超声速涡轮叶栅通道内的超声速气膜冷却,采用数值计算的方法,对主流压比2.33~4、冷气入射角度15°~45°条件下的涡轮叶栅超声速气膜流动和传热进行了研究。计算结果表明:超声速气膜射流与主流作用后产生的斜激波与尾缘激波交汇,形成两道反射激波,其中一道反射激波作用在气膜孔下游的叶片表面又形成了反射;在不同的主流压力下,超声速气膜射流在叶片法向和展向上展现出不同的发展特征,对转涡对(CVP)在展向上相互挤压,扼制了高温主流卷入叶片壁面;主流压比增加到4,气膜射流区在法向拉长,在展向相对较弱,导致主流在对转涡对(CVP)的作用下被卷入气膜射流的底层,壁面冷却效率降低;气膜入射角从15°增大到45°,冷却效率整体上呈先上升后下降趋势,在入射角30°时冷却效率相对最大,这与射流的穿透能力、冷却气流再覆壁面特征有关。  相似文献   
777.
心形孔气膜冷却特性的数值模拟   总被引:1,自引:0,他引:1  
为进一步提高航空发动机热端部件的冷却效率,提出了心形气膜冷却孔结构,利用数值模拟分析心形孔的流场特性和冷却特性,并通过与常规圆形孔计算结果的对比,揭示心形气膜孔强化冷却的物理机制.计算结果表明:与圆形孔相比,心形孔能有效抑制反向旋转涡对的生成,冷却气流的贴壁效果得到明显提高,同时心形孔的扩展出口结构使得冷却气流在展向上的分布更为均匀,展向平均气膜冷却效率得到显著提高;在吹风比为0.5~2.0内,心形孔的全局平均冷却效率相对于圆形孔分别提高了70.93%,246.94%,598.9%和879.07%;从热流比分布来看,心形孔在吹风比为1.5下的热流比值最低,表征在吹风比为1.5下心形孔对壁面的保护效果最好.   相似文献   
778.
表面织构靴底流体动压指尖密封的性能分析   总被引:3,自引:1,他引:3  
郎达学  苏华 《航空学报》2012,33(8):1540-1546
表面织构靴底流体动压指尖密封是本文提出的一种新型柔性气体密封。建立了具有圆形微坑表面织构靴底的指尖密封分析模型,采用流固耦合有限元数值计算方法,分析了不同工况和织构结构条件下表面织构靴底流体动压指尖密封的泄漏率、气膜承载力及气膜流场特征。结果表明具有圆形微坑织构靴底的指尖密封具有较低的泄漏率和较高的气膜承载力,通过与现有典型人字槽流体动压指尖密封和接触式指尖密封的性能对比,进一步说明了表面织构靴底指尖密封的综合性能优势。流体压差对表面织构靴底流体动压指尖密封的性能影响较大;压差较大时,适当增大微坑直径、减小微坑深度、采用均匀分布的微坑结构形式,有利于提高密封性能。本文工作为设计性能良好的指尖密封结构提供了一种新思路。  相似文献   
779.
凹槽状叶顶气膜孔优化设计与知识挖掘   总被引:1,自引:2,他引:1       下载免费PDF全文
为改善叶顶气膜冷却效果,基于全局优化算法,引入数据挖掘技术,建立了凹槽状叶顶气膜孔优化设计与数据挖掘框架。以叶顶的平均气膜有效度为优化目标和以冷气流量为约束条件,对GE_E3动叶叶顶的气膜孔进行优化设计。优化后叶顶的平均气膜有效度提高了3.7倍。流动结构与冷却分析表明,优化后气膜孔的分布得到了改善,孔径的改变使得冷气流量分布更为合理,从而增加了叶顶前缘的气膜覆盖面积,增强了主流对冷气的压制效应,喷射冷气更加贴近壁面,叶顶的平均气膜有效度显著提高。同时通过对设计空间进行知识挖掘,探究设计空间信息,结果表明叶顶前缘气膜孔对叶顶气膜冷却影响显著,增大叶顶前缘气膜孔孔径,将前缘气膜孔向前缘移动,减小中部气膜孔间距,可有效改善叶顶气膜冷却效果。  相似文献   
780.
为了提高低外阻二元高马赫数进气道的抗反压性能,研究了在内收缩段设置隔板对低外阻二元高马赫数进气道抗反压能力的影响,通过数值仿真计算了两组不同内收缩比的低外阻二元高马赫数进气道内收缩段有/无隔板下的反压特性,并对比分析了相应的流场结构。结果表明,隔板能够显著抑制低外阻二元高马赫数进气道内强激波/边界层干扰现象,改善隔离段入口截面气流参数分布的均匀性,使隔离段内激波串结构上下较为对称地推进。内收缩比1.566进气道引入隔板能够将极限反压提高4.2%。引入隔板能够在增加进气道压缩效率的前提下,提高进气道的最大抗反压能力,拓宽进气道的稳定工作范围。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号