首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   799篇
  免费   288篇
  国内免费   112篇
航空   878篇
航天技术   51篇
综合类   150篇
航天   120篇
  2024年   13篇
  2023年   41篇
  2022年   34篇
  2021年   43篇
  2020年   47篇
  2019年   48篇
  2018年   46篇
  2017年   37篇
  2016年   54篇
  2015年   55篇
  2014年   56篇
  2013年   54篇
  2012年   62篇
  2011年   50篇
  2010年   52篇
  2009年   54篇
  2008年   63篇
  2007年   46篇
  2006年   26篇
  2005年   39篇
  2004年   37篇
  2003年   39篇
  2002年   31篇
  2001年   31篇
  2000年   26篇
  1999年   14篇
  1998年   16篇
  1997年   8篇
  1996年   12篇
  1995年   14篇
  1994年   7篇
  1993年   9篇
  1992年   7篇
  1991年   13篇
  1990年   9篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
排序方式: 共有1199条查询结果,搜索用时 15 毫秒
81.
超临界机组末级叶片典型截面的叶型设计   总被引:1,自引:1,他引:0       下载免费PDF全文
针对超临界机组末级长叶片的设计特点,采用遗传算法和人工神经网络,提出对长叶片典型截面叶型进行分区优化设计思想,并对原型与改型进行了多工况点的数值计算,结果表明,将叶型吸力侧后半段由直线型改为内凹型,能够显著降低超声速叶型在超声速工况范围内的叶型损失。对叶型前缘以及压力侧的局部优化设计能够改善超声速叶型在临界马赫数工况下的气动性能。优化设计最大程度地减小了样本空间,提高了优化效率。  相似文献   
82.
关于细长导弹亚、跨、超声速时,α∞=0°~90°范围消除支杆干扰的风洞气动力实验方法研究,重点叙述了消除支杆干扰的必要性、原理和方法,明确超声速和亚、跨声速消除支杆干扰实验方法的理论区别.通过M=0.4和0.8两种Mach数的风洞气动力实验,初步证明:在亚、跨声速情况,消除支杆干扰的风洞气动力实验方法,也能与超声速情况类似获得解决.  相似文献   
83.
超声速进气道可压及不可压流动数值模拟   总被引:2,自引:0,他引:2  
采用Chio-Merkle预处理矩阵对可压NS(Navier-Stokes)方程组进行时间预处理,分析了预处理方法的物理和数学背景.用有限体积方法,结合LU-SGS(Lower-Upper-Symmetric-Gauss-Seidel)隐式时间积分和AUSM+(P)(Precondition Advection Upstream Splitting Method)格式、中心差分2种空间离散格式,求解该预处理NS方程组.通过圆弧凸包流动和二维方腔顶盖驱动流动的数值试验表明,该方法克服了传统时间迭代方法模拟低速流动时的刚性问题,加速了收敛过程,可以同时有效地模拟可压及不可压流动.用此方法与块结构化网格技术相结合,进行了在不同飞行马赫数、攻角和出口反压条件下,混压式轴对称超声速进气道三维流场数值模拟.计算结果表明:该方法能准确地捕获复杂激波系,清楚地揭示进气道三维流动现象;进气道性能随工作条件的变化规律,与理论分析一致.   相似文献   
84.
后缘喷流对三角翼绕流影响的N-S方程数值分析   总被引:1,自引:1,他引:0  
本文用拟压缩性方法求解不可压流雷诺平均拟压缩N-S方程组,对带有后缘喷流的三角翼粘性绕流进行了数值模拟,求解中采用了Beam-Warming隐式近似因子分解格式以及MML代数湍流模型。计算结果说明,后缘喷流使涡核压强降低,使涡核速度增大,从而对三角翼前缘分离涡有稳定作用,并能增大上翼面的负压值和下翼面的正压值,从而可以增加部分升力。计算结果还说明,喷口面积或喷流下偏会使上述作用增强。  相似文献   
85.
后缘喷流对三角翼前缘涡的影响   总被引:7,自引:0,他引:7  
本实验应用染色液流动显示技术和激光测速技术 (LDV)研究了 6 0°后掠三角翼在后缘差动喷流、对称喷流情况下前缘涡破裂位置、涡核的空间分布、涡核的速度分布以及三角翼背风面流动结构随迎角的演化等。实验结果表明 ,喷流增大了三角翼前缘涡涡核保持高速度的区域 ,推迟了涡核减速的位置 ,在大迎角情况下 ,对称喷流有助于消除由前缘涡振荡引起的“摇滚”现象。  相似文献   
86.
罗皓  金志光  张堃元 《航空动力学报》2019,34(11):2366-2376
为提高来流马赫数范围为2~4的“X”型进气系统大攻角下的稳定裕度,设计并研究了一种倒置二元进气道设计方案,并将其与正置方案进行了比较。结果表明:来流马赫数为2.3~3.5,攻角范围为0°~6°时,倒置布局设计方案总体性能较优,未出现明显激波/附面层干扰问题,能够满足设计要求。在采用相同的进气道设计方案时,倒置布局其迎风与背风进气道结尾激波位置及总体性能参数差异更小;0°攻角时倒置布局临界总压恢复系数与正置布局相当,4°攻角时倒置布局比正置布局高2%~3%,8°攻角时普遍高19%以上,且来流马赫数越高提升幅度越明显,8°攻角下倒置布局总流量系数较正置布局高6%左右。研究还发现,当来流马赫数较低时倒置布局总阻力低于正置布局, 4°攻角时低1.7%;而来流马赫数较高时倒置布局总阻力高于正置布局,4°攻角时高2.0%。   相似文献   
87.
张喆  金星  席文雄 《推进技术》2019,40(9):2075-2083
为了将支板喷注器与等离子体射流这两种促进超声速燃烧室燃烧的方式结合起来,设计了一种带有等离子体射流喷孔的支板燃烧室,并在超声速来流的条件下,针对燃料喷注总压、燃料喷注位置、等离子体射流介质、等离子体射流总压对燃烧室燃烧性能的影响进行了三维数值模拟。研究发现:增大燃料的喷注总压,燃烧室的燃烧范围明显增大,燃烧效率呈现出先增大后减小的趋势,在燃料喷注总压为2.0MPa时,燃烧效率达到最大值90.4%;不同的燃料喷注位置对燃烧室的燃烧范围影响较小;等离子体射流介质为O2时,燃烧效率最高,燃烧范围最广;提高等离子体射流的喷注总压,能够提升凹腔剪切层高度,有效促进燃烧,但同时也带来了更高的总压损失。  相似文献   
88.
一种引射增强型二次喉道新方案的数值模拟   总被引:2,自引:2,他引:0       下载免费PDF全文
姚翔宇  黄生洪 《推进技术》2019,40(11):2454-2463
为提高大型超声速风洞的运行经济性,设计了一种通过引射低总压冷介质提高扩压性能的新型二次喉道扩压器,其结构特征是在扩压器收敛段前方增加侧壁凹槽,在凹槽前沿位置引入低总压常温空气作为冷介质,通过引射扩散作用在扩压器壁面形成气膜,调节二次喉道实际流通直径,较大程度上增强二次喉道的静压恢复能力,同时又降低二次喉道壁面热负荷,冷却壁面。数值验证结果表明,所设计新型二次喉道方案可通过调节引射气量自适应较宽范围的运行条件,有效隔离扩压器壁面直接接触高温燃气,同时提高了扩压能力,节省后段接力引射器的主动流流量近30%,对风洞运行经济性提升十分明显。  相似文献   
89.
超额定状态下二元超声速进气道的流动特性   总被引:1,自引:0,他引:1  
为了揭示超额定工作状态下超声速进气道内的复杂流动机理,对一设计马赫数为2.0的二元超声速进气道开展了数值模拟研究,获得了其在不同来流马赫数状态、不同节流状态下的流场结构.结果表明:当进气道工作在额定状态时,随着节流程度的增加,其激波串的核心区由偏向下壁面摆至偏向上壁面;而在超额定状态下,由于依次受到唇罩内侧分离包、唇罩激波等的影响,激波串核心区则由偏向上壁面转而摆至偏向下壁面.在来流马赫数为2.5的节流状态下,其唇罩激波与前体斜激波相交形成了马赫杆等复杂波系结构,而来流马赫数为3.0状态却并未形成此类现象.在上述两种超额定工作状态下,前体斜激波的上透射激波均在高反压条件下演化为正激波形态,而唇罩激波的下透射激波形态也发生了明显的改变.   相似文献   
90.
对二维超声速气固两相混合层进行双向耦合,研究了粒子图像测速技术(PIV)中示踪粒子对超声速混合层的湍流变动作用。超声速气固两相混合层的气相采用大涡模拟,离散相采用拉格朗日颗粒轨道模型求解。结果表明:与无负载示踪粒子时的超声速混合层相比,小Stokes数示踪粒子在超声速混合层中的布撒减弱了流向湍流,而强化了法向湍流,使雷诺应力峰值增大了9.68%;大Stokes数示踪粒子对混合层的湍流脉动起到了一定的削弱作用,最大雷诺应力值只有无负载时的41.74%。大质量载荷时,大量示踪粒子的运动尾迹抹平了部分法向速度脉动,使最大法向速度脉动只有无负载粒子时的38.63%;中等质量载荷时,超声速混合层的法向速度脉动和雷诺应力峰值与无负载粒子时相近;而小质量载荷时,超声速混合层中心线及其附近的法向速度脉动得到较小的增强,而最大流向速度脉动却被削弱了19.29%。小Stokes数和中等质量载荷示踪粒子对原始无负载粒子时的流场影响相对较小,研究结论对高速流动PIV测试有着重要的参考价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号